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The exocrine pancreas, with the acinar cell as its func-
tional subunit, has served as the paradigm for the study
of a protein-secreting gland. Although the relationship
between the gross or morphologic features and the phys-
iologic functions of this organ are still being elucidated,
numerous investigations at the subecellular level have
given us insight into basic structure-function relation-
ships. This chapter is divided into four sections: The first
is a general morphologic overview of the gland, in which
we describe regional variations in cellular composition
and the interrelationship of cells of the endocrine and
exocrine gland to the surrounding connective tissue
stroma and to each other. In addition, traditional neural
pathways and paracrine interrelationships are discussed.
The second section explores the role of tight junctions in
delineating the internal and external environments of
the gland and considers the function of communicating
junctions in cell-cell interactions. The third and fourth
sections focus on the subcellular organization of the
acinar cell and conclude with a detailed review of the
formation, storage, and release of sécretory proteins.

GENERAL MORPHOLOGIC DESCRIPTION

The pancreas is a retroperitoneal organ with a mass of
85 + 15 g in the human female and 90 + 16 g in the
male. It arises fromr two anlage of the primitive foregut:
a dorsal portion coming from the dorsum of the duode-;
num, which forms a portion of the head and uncinate
process and all of the body and tail, and a ventral por-
tion derived from the primitive bile duct, which forms
the remainder of the head and uncinate process. Gener-
ally, the ducts draining the dorsal and ventral pancreas
fuse at about 6 weeks of gestation in humans, with the
ventral duct providing the main conduit of dramage into
the duodenum.
In the adult, different origins of the pancreas are re-
flected by the occasional persistance of separate dorsal
.and ventral ducts and a higher concentration of pancre-
vatic polypeptide in the area derived from the ventral
pancreatic bud (109,118). The functional meaning of
the latter observation is unknown. The arterial supply
arises from branches of the splenic artery, which forms



774 STRUCTURE AND FUNCTION OF PANCREAS

arcades with the pancreatic branches of the gastroduo-
denal and superior mesenteric arteries (99). The autono-
mic innervation is both parasympathetic and sympathetic
through splenic subdivisions of the celiac plexus. The in-
nervation of the pancreas is discussed later.

The pancreas is a mixed exocrine-endocrine gland,
with the exocrine portion of the gland forming the
greatest volume (84%). Ductular cells and blood vessels
form about 4% of the gland volume, while endocrine
cells compris qnly 2%. The remainder (10%) is occupied
by extracelldlarymatrix.

The main pancreatic duct, in addition to serving as a
conduit for secretory proteins, may contribute a portion
of the fluid and electrolytes secreted by the pancreas
(139), although micropuncture studies in the cat suggest
that most fluid and electrolyte secretion arises from ex-
tralobular ducts (83). Although it has long been ac-
cepted that the exocrine pancreas is organized into true
acinar units (79), and is referred to as such, several re-
cent studies question this concept. Wax casts of dog
pancreas demonstrate the final ductular subdivisions to
be an anastomosing tubular arrangement rather than an
acinar structure (13). Electrical coupling experiments in
the mouse pancreas have shown the electrical subunit of
the pancreas to be about 500 cells in size (57). These two
studies suggest that the functional subunit of the pan-
creas is both electrically and morphologically larger
than the traditional 20- to 50-cell acinus.

Acinus

The basic subunit of the exocrine pancreas is the acinus,
which is bound by a connective tissue matrix, including
the basal lamina, which does not course between the lat-
eral areas of contiguous acinar cells (Fig. 1). This con-
nective tissue layer is continuous with that surrounding
the ductular epithelium. The majority of cells in the
acinus consists of acinar cells, with a smaller number of
centroacinar cells marking the beginning of the ductular
system of the gland. The supporting matrix of the pan-
creas is a mixture of several different types of collagen.
Preliminary investigations from this laboratory (D. E.
Ingber, J. A. Madri, J. D. Jamieson) indicate that pan-
creatic basal lamina consists of type IV, collagen, lami-
nin, and fibronectin, while types I and III are located in
the adjacent extracellular space, ductular and vascular
elements. Collagen types I and III are presumably pro-
duced by fibroblasts or other cell types in the intercellu-
lar space. Studies by Banerjee et al. (6) suggest that the
basal lamina is produced by the epithelial cells. At the
transmission electron microscope (TEM) level, the basal
lamina, previously termed the basement membrane, is
usuallv composed of three zones (157): (a) an electron
lucent layer immediately adjacent to the plasma mem-
brane, referred to as the lamina lucida or rara, (b) a cen-
tral dense layer, the lamina densa, and (c) an outer (the

lucent) layer—the lamina diffusa—which blends into
the extracellular space. Since the electron lucent areas
are often inconspicious or even absent, some¢ authors

‘have used the term basement membrane or basal lamina

as synonomous with lamina densa. Further TEM studies
of rat pancreas (68) reveal variations in the morphology
of basal lamina according to the cell type.

The acinar cell possesses a well-defined lamina lucida
and lamina densa, while the lamina diffusa is indistinct.
In contrast, the basal lamina adjacent to centroacinar
cells consists of a more prominent lamina lucida and
lamina densa and a distinct lamina diffusa. In addition,
a sharp distinction is found between the two types of
cells in the acinus when stained for acid substances. The
lamina diffusa is exclusively stained under the acinar
cell, while both the lamina diffusa and lucida stain be-
neath the centroacinar cell. Although the basement
membrane probably functions as a molecular sieve in
the kidney (38), its exact function in the pancreas is un-
known. The staining characteristics found in the study
by Katsuyama and Spicer (69) suggest the presence of
abundant fixed anionic binding sites beneath the centro-
acinar cell which may be important in ion transport.

Acinar Cell

The majority of the pancreas (> 80%) is comprised of
acinar cells. By light microscopy, these cells are pyrami-
dally shaped, with the apex facing the lumen of the
acinus (Fig. 1). Areas of specialization are easily appre-
ciated within acinar cells (1). Zymogen granules are re-
stricted to the apical cytoplasm of the cell and vary in
number, depending on the stage of development (65),
supply of nutrients (114), and state of stimulation by
neurohormonal agents (29). An area between the basally
located nucleus and the apex is often paler staining by
light microscopy. This represents the Golgi complex
(discussed below). A third zone characterized by intense
basophilia is located in the basal region of the cell and
represents endoplasmic reticulum (ER). The acinar cells
are generally uniform in their appearance throughout
the pancreas, although a ‘‘halo’’ phenomenon is seen in
the periinsular region. Acinar cells in this area have a
larger cytoplasm and nucleus and an increased volume
of zymogen granules compared to the remainder of the
pancreas (49). The potential importance of this observa-
tion is discussed below.

Centroacinar Cell

The centroacinar cells are seen in the final subdivision
of pancreatic ducts. They are smaller than the acinar cell
(31), have a sparse cytoplasm devoid of zymogen gran-
ules, and contain a small Golgi complex and few ER cis-
ternae. The mitochondria are large, abundant, and tend
to be elongated. Occasionally, small smooth surface
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FIG. 1. Light photomicrograph of a guinea pig pancreas. The heavy line denotes an acinus. Region A, apical cytopiasm, rich in
zymogen granules (ZG). Region B, basal, basophilic staining region representing ER. Region C, pale, epinuclear region representing
the Golgi complex. L, lumen of the acinus; N, acinar cell nucleus; n, nucleolus; M, mitochondria; d, intralobular duct.

vesicles are seen in the cytoplasm. Both the acinar and
centroacinar cell have microvillous processes. Support-
ing the contention-that centroacinar cells are responsible
for fluid and electrolyte secretion is the histochemical
localization of carbonic anhydrase to this cell type (20).
In addition, Katsuyama and Spicer (69) found that
silver, when used as a marker for anions, precipitates
predominantly on the luminal surface of centroacinar
cells and not on acinar cells. The capacity of nitric acid
to reduce the staining of centroacinar cells suggests that
the anion present is not C1- and most likely is bicar-
bonate (102). Both of these findings distinguish the
acinar from the centroacinar cell on a functional basis
and indicate the role of the latter in electrolyte secretion.

The acinar and centroacinar cells can also be distin-
guished by sparse staining of sialomucins on the baso-
lateral membrane of the former compared to the latter
(69). Since it has been suggested that the sialic acid-rich
proteins may act as a cation filter in other systems (89),
this difference may also reflect specialization of the cen-
troacinar cell in electrolyte transport.

Lectin Binding

Differences between the centroacinar and acinar cells
have been demonstrated by specific binding patterns for
lectins (92). These substances are usually derived from
plants and bind reversibly to certain carbohydrates or
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glycosubstances on the cell surface. Thus they can be
utilized as ‘‘markers’’ for the content or distribution of
membrane glycosubstances.

Table 1 reviews the carbohydrate moieties thought to
be bound by several lectins. Table 2 reviews the binding
patterns of these agents by pancreatic cells. Qualitative
differences in the binding of lectins to the plasmalemma
of acinar, centroacinar, or endocrine cells allows these
cells to be distinguished from each other. Thus, while
acinar cells bind all the lectins indicated in Table 2, en-
docrine and centroacinar cells are devoid of binding sites
for L-fucose-specific lectins and soybean agglutinin,
while centroacinar cells can be distinguished from en-
docrine cells by the ability of the former to bind RCA II.
The appearance of plasmalemmal glycoconjugates on
endocrine and acinar cells of the pancreas is develop-
mentally regulated and may be related to histogenesis of
the gland into its endocrine and exocrine portions (91).
Finally, some of these lectins may bind to hormone re-
ceptor sites in the pancreas, as suggested by the inhibi-
tion of CCK-OP binding to rat pancreatic plasma mem-
‘branes by wheat germ agglutinin (26) and by the finding
that the appearance L-fucosyl-containing glycoproteins
on the surface of developing acinar cells close to parturi-
tion correlates temporally with the onset of secre-
togogue responsiveness (29).

Endocrine Celis

The endocrine pancreas constitutes a small but impor-
tant cell population of the pancreas. Pancreatic islets
consist of several different cell types with 75% B cells,
20% A cells, 5% D cells, and a small number of C cells.
In human islets, these cells are arranged in layers: the A
cells are outermost, D cells intermediate, and B cells in-
nermost. Electron microscopy (EM) and immunohisto-
chemical studies suggest endocrine specialization for
each of these cell types. B cells produce insulin, A cells
glucagon, and D cells somatostatin, gastrin, and pan-

TABLE 1. Carbohydrate moieties bound by
various lectins@

creatic polypeptide (121). All these hormonal agents
have been found to modify pancreatic exocrine secre-
tion (28,45,66,105,158). Recent observations in this
laboratory and by others confirm the presence of an in-
sulin receptor on the acinar cell (8, L. J. Miller, V.
Iwanij, and J. D. Jamieson, unpublished). Whether
pharmacologic or physiologic effects of insulin are be-
ing observed remains to be seen. The finding that the
islets are supplied with a capillary bed, which has its ef-
ferents connecting to a second capillary bed encompas-
sing the exocrine pancreas, is of great interest (40). It
suggests an insuloacinar system in which high concen-
trations of islet hormones may contact the acinar cell,
allowing the endocrine pancreas to directly interact with
the exocrine system.

Intermediate Cells of the Pancreas

Both the endocrine and exocrine pancreas are derived
from a common outpouch from the midgut endoderm.
Cells that maintain characteristics of both endocrine
and acinar pancreatic cells have been observed in a
variety’ of animals and are designated ‘‘intermediate
cells”’. Melmed (97) suggests that these cell types show
characteristics of acinar cells, in addition to containing
secretory granules of the «, B, or & cell variety. Al-
though intermediate cells can be induced in iatrogenic
diabetic states or in rats following partial pancre-
atectomy (90), their importance is not understood. It
has been suggested that they represent acinar cells that
have undergone a transition that enables them to pro-
duce insulin to compensate for the induced diabetes.

Neural Innervation

The importance of the nervous system in the control
of pancreatic secretion is not fully understood, but a
role for the cholinergic, adrenergic, and paracrine path-

TABLE 2. Summary of lectin binding to various
cells of the pancreas?

Lectin® Hapten sugar Lectin® Acinar cell¢ Centroacinar Endocine
Con. A Glucose, mannose Con. A il -l 1l
Lotus lectin Fucose Lotus il — —
RCA | Galactose RCA | 1 1l 1
RCA Il N-acetylgalactosamine, galactose RCA I} i ] —
SBA N-acetylgalactosamine, galactose SBA i — —
WGA N-acetylglucosamine WGA 1 1 1]
Limulin N-acetylneuraminic acid Limulin ]! 1 ]|

aFrom ref. 92.

bConA, concanavalin A Lotus lectin, lotus tetragono-
lobus; RCA ricinus communis agglutinin; SBA, soybean
agglutinin; WGA, wheat germ agglutinin.

4From ref. 92,
bSee Table 1 for abbreviations.
—, no binding; Il, moderate binding; lil, heavy bind-

ing.
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ways has been implicated in physiologic studies (145).
Morphologic studies also suggest that neural controls
are active in exocrine pancreatic function. In humans
and dogs (156,165), both vagal and sympathetic nerves
innervate the pancreas. The supply tends to be richer in
the head of the pancreas than in the tail. The head and
isthmus tend to be innervated by the right celiac, hepatic,
and superior mesenteric plexus, while the tail and body
are mainly innervated by the celiac plexus and the
splanchnic neurologic network.

Nerve Terminals

The ultrastructure of pancreatic innervation has been
studied in several animals. Myelinated fibers are gener-
ally not found in the parenchyma, and ganglion cells are
seen in the interlobular tissue.

The site of nerve termination varies from species to
species but can be divided generally into four terminal
areas: (a) blood vessels, (b) pancreatic acinar cells, (c)
duct cells, and (d) islet cells.

In the bat, dove, or domestic fowl, pancreas nerve end-
ings can be observed in direct contact with the acinar
cell surface (164,165). In contrast, in the monkey, dog,
or guinea pig, nerve endings do not directly contact the
cell surface but rather terminate near the base of the
acinar cell separated from the plasmalemma by a layer
of basal lamina (165). In the rat, the minimum separa-
tion between the nerve terminals and the, acinar cell
plasma membrane is 1,000 A (141).

Nerve terminals about blood vessels generally possess
a prominent gap (500 A), with a thin band of connec-
tive tissue intervening. Nerve termination is usually on
or near the basement membrane of ductular cells. Inner-
vation of islets is generally richer than that of the acini,
and nerve terminals directly abut on islet cell plasma-
lemma; in some species, however, differences have been
noted (165). ;

Nerve terminals have been subdivided according to
the morphology of their synaptic vesicles (164). Four
types of endings have been described, based on the pres-
ence of small clear vesicles and/or large dense core vesi-
cles. Several studies suggest that each type of nerve end-
ing differs in the type of neurosecretory material that it
contains. In addition, there is a tendency for specific
nerve endings to be associated with one of the regional
subunits of the pancreas; e.g., nerve endings with large
and small dense core vesicles are found only in associa-
tion with pancreatic blood vessels in fowl (164).

Cholinergic Nerves and the Pancreas

Numerous in vivo studies have implicated the impor-
tance of cholinergic input on pancreatic secretion, al-

though its role is still controversial (128). Debas and
Yamagishi (25) showed a reflex arc connecting the an-
trum of the stomach and the pancreas. Antral distention

 with acid or alkali results in secretion of protein and bi-

carbonate by the dog pancreas. The observation that
truncal vagotomy diminished and atropine abolished
this phenomenon suggests that this is mediated by a cho-
linergic reflex arc. In the dog, Solomon and Grossman
(148) examined secretory capacity from a transplanted
denervated pancreas in response to exogenous cerulein
or food stimulation. They observed that: (a) protein se-
cretion in response to exogenous cerulein is the same for

" the intact and transplanted pancreas; (b) the trans-

planted pancreas is significantly less sensitive to in-
testinal fat or amino acid perfusion than is the intact
pancreas; (c) neither atropine nor vagotomy alters the
response of the transplanted pancreas to intestinal stimu-
lation. In addition, Singer et al. (144) have demonstrated
that amylase secretion occurs more rapidly after intes-
tinal food stimulation, compared to direct stimulation -
with cholecystokinin (CCK). Atropine or vagotomy in-
creased the latency period for enteric stimulation. These
findings support the presence of an enteropancreatic
reflex.

Supportive of the importance of the parasympathetic
nervous system in pancreatic function is the localization
of a muscarinic receptor on the acinar cell. Acetylcho-
line or its analogs administered to pancreatic lobules or
isolated acinar cells results in release of secretory pro-
teins (2). This receptor is different from that for CCK;
since it alone is blocked by atropine (19) and not by di-
butyryl-cyclic GMP (120). In addition, the simultaneous
administration of CCK and a cholinergic agonist at their
EDsq results in ‘an additive release of secretory proteins
(170), supporting the presence of two different receptor
populations.

Other Neural Pathways involving the Exocrine Pancreas

Sympathetic.

In addition to the cholinergic nervous system, several
other neural pathways have been implicated in control-
ling exocrine pancreatic function. In the dog pancreas,
norepinephine causes a decrease in cerulein-induced
protein and fluid secretion, which is reversed by phe-
noxybenzamine (160). Pancreatic blood flow studies
show that this effect is mediated by vasoconstriction.
This study is consistent with histochemical observations
(32) demonstrating that adrenergic terminals are pre-
dominantly associated with vascular structures in the
pancreas.

Several studies suggest that dopaminergic agents are
active in stimulating pancreatic fluid and electrolyte se-
cretion. Although one study suggests that they also pro-



