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The Chemical Synthesis of Natural Products



Dedicated to the memory of
a very fine organic chemist
Dr Clive Bird
of King’s College London




Preface

The synthesis of complex natural products continues to occupy a central
position in organic chemistry research, not only because nature keeps provid-
ing us with some of the most awe-inspiring and synthetically challenging
molecules that we can ever aspire to synthesise, but also because research in
this area frequently drives many important breakthroughs in methodology.
Given the tremendous contribution that complex natural product synthesis
makes to chemistry as a whole, it is essential that up-to-date reference vol-
umes appear regularly on this massive subject area, to assist organic chemists
engaged in this activity. Such volumes should summarise concisely the most
important technological advances and research achievements that have oc-
curred in the sub-disciplines of natural product synthesis over stated periods
of time, and they should not attempt to be comprehensive.

I am happy to say that this book goes a considerable way to fulfilling this
role, with all the authors having effectively highlighted most of the key ad-
vances that have occurred within their specialist sub-areas in the past decade.
I believe that it will be of considerable value to all synthetic organic chem-
1sts.

Karl J. Hale
University College London
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1  Strategies for the chemical synthesis
of complex carbohydrates

J.M. Gardiner

1.1 Introduction

The 1990s have seen particularly vigorous activity in the arena of
oligosaccharide synthesis, and, in the broadest sense, the synthesis of oli-
gosaccharide analogues. This chemical interest has in large part been
driven by the emerging understanding of the biological roles of oligo-
saccharide moieties, together with the need for material for biological
investigations, and the exciting opportunities for creating new therapeutic
agents. There have been major advances in a variety of areas of complex
carbohydrate chemistry since the late 1980s. These have encompassed
new chemical glycosylation methodologies and improved strategies for
using these methods in oligosaccharide assembly. Applications of
enzymes in oligosaccharide synthesis have also seen major developments.
The synthesis of carbohydrates on solid supports and the synthesis of
saccharide libraries (solid-supported and in solution) and of multivalent
saccharide assemblies have been progressing, and numerous complex
oligosaccharides and related glycoconjugates have now been synthesised
as a result of this array of methodological developments. And last, but
not least, recent years have seen a rapidly growing interest in
carbohydrate structural mimetics, where not just intersugar atoms are
altered, but where structural motifs are replaced by nonsugars. In this
chapter, we will briefly outline the successes of some new chemical
glycosylations and also of enzymatic protocols since the late 1980s,
directing readers to various more comprehensive reviews. The synthesis
of carbohydrates on solid-supports, and libraries on support or in
solution will be highlighted, and the growing areas of carbohydrate
mimetics and multivalent carbohydrates will be reviewed.

1.2 Chemical glycosylations

The synthetic challenges presented by oligosaccharide assembly reside
in the requirement for regioselective glycosylation of acceptor sugars, and
in the requirement for the stereoselective introduction of one anomeric
stereochemistry in the coupled product. The first issue has traditionally
been dealt with by selective protection strategies. The control of anomeric
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stereochemistry has been tackled in a number of ways through novel
chemical methodologies.

A central issue in complex oligosaccharide assembly is control of
anomeric reactivity; in particular, chemoselectivity in the reactivity of
different anomeric functional groups. Recent years have seen a tre-
mendous simplification of the range of operations needed to implement
each glycosidic coupling step, and an overall reduction in the number of
different glycosyl donors needed to implement a given oligosaccharide
synthesis. Several strategies have been devised which rely on replacement
or modification of one anomeric functionality which does not serve as a
donor, with another which does. (This is in addition to the phenomenon
of O(2) functionality being used to modulate anomeric reactivity, by
‘arming’ or ‘disarming’ the donor).! These combined approaches have led
to oligosaccharide syntheses being developed that have exploited a com-
mon anomeric donor group. They have also made possible the reitera-
tive assembly of oligosaccharides, wherein identical sugar building blocks
are repeatedly used as acceptor and then as donor. Good acceptor/donor
intermediates for reiterative approaches include glycals and glycal epox-
ides (Section 1.2.4),! thiophenyl glycosides,' phenyl sulfoxides, n-
pentenyl glycosides and n-pentenyl dibromides,” p-N-acetylphenyl sul-
fides,® and O-allyl and vinyl glycosides.** In addition, Nicolaou and co-
workers have employed thiophenyl and fluoro glycosides in the same way,
converting thiophenyl glycosides to fluoro glycosides before using these as
donors, and relying on the fact that the fluoroglycoside can couple to
acceptor thioglycosides.® An extrapolation of this latter approach is the
so-called orthogonal use of thiosulfides and fluorides, which can each act
as glycosyl donors using different conditions under which the other
functionality is inert. This obviates the need to modify or substitute the
anomeric functionality as is required in those methods listed above. Thus,
phenylthioglycosides couple to glycosylfluoride acceptors under NIS-
TfOH (or AgOTf) promotion, and the product glycosyl-fluorides can then
be further extended by coupling to a phenylthioglycoside acceptor using
Cp,HfCl,-AgClO, promotion.” A heptasaccharide repeating B-(1 — 4)
linked oligo-GIcNAc was prepared using this strategy,” and other systems
such as an extended blood group B determinant tetrasaccharide have
also been prepared.® The alternative of employing a spectrum of anomeric
reactivities has been adapted into a one-pot sequential synthesis of a
number of trisaccharides, using a combination of bromides, fluorides or
trichloroacetimidates, with phenyl sulfides and methyl glycosides.” Addi-
tionally, phenylselenoglycosides have extended such series (section 1.2.2).
For more comprehensive reviews of chemical glycosylation in general,
including an explanation of the latent-active and armed-disarmed
reactivity concepts, readers are directed to other sources.' !
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1.2.1 Glycosyl sulfoxides

Glycosyl sulfoxides, first developed by Kahne’s group,'' have proven
efficient and valuable glycosyl donors. They can be selectively activated
in the presence of thiophenylglycosides (from which the sulfoxides are
derived), and thus can be used as donors in glycosylation reactions
where the thioglycoside acts as an acceptor. Thus, all building blocks can
originate from thioglycosides. The thioglycoside can then be used sub-
sequently to extend further the saccharide structure without the need for
changing anomeric functionality.

Kahne and co-workers have demonstrated the utility of this type of
donor, in an attractive synthetic route to Le®, Le® and Le*, all syntheses
simply relying on iterative use of the same sulfoxide coupling conditions
[for the synthesis of Le* (1), see Scheme 1.1].'? The reactivity of sulfoxides
over thioglycosides has also been exploited by others. For example,
Martin-Lomas’s group has used this to good effect in an efficient synthe-
sis of tetragalactoside 5 (Scheme 1.2), which retains the thioglycosidic
functionality originating from starting monosaccharide 4 (the other 3
galactosides being derived from sulfoxide 3)."?

OPiv
Aco OAC Ho OH oH

OAc
PM%O 9 i-iv (6] (: v-Xi 0 o
Na ACO&/OHO Hoé&/o OMe
AcO N
3
SPh

SPh

pivo OPIV
0
PivO SOPh HO
PivO
SOPh
0 OBn 2
OBn

Scheme 1.1 (i) Tf,0, DTBMP; (ii) LIOH, MeOH; (iii) Ac,0, Pyr.; (iv) 10% TFA, CH>Cly; (v)
Tf,0, DTBMP, 2; (vi) HgTFA,, wet CH,Cl,; (vii) NaH, Mel; (viii) Lindlar reduction; (ix) Pd/C.
Hy; (x) AcyO, Pyr., DMAP; (xi) NaOMe, MeOH.

1.2.2  Selenoglycosides and telluroglycosides

Throughout the 1990s, the utility of selenoglycosides has been evidenced
in a number of valuable ways. Such glycosides have conveniently extend-
ed the anomeric reactivity spectrum. They provide a valuable strategic
alternative to the iterative interchange of anomeric functionality or the
use of truly orthogonal reactivity.

Pinto’s group were the first to demonstrate that (armed or disarmed)
selenoglycosides could be activated over thioglycosides (armed or
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OAc .
Xo o QA
0 0

(6} SOPh o
TBDMSO i il
3 ”0()
o OH X‘) ii
é 0
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\ HO OAc
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Scheme 1.2 (i) Tf,0, di--Bu-4-Me-pyridine; (ii) TBAF; (iii) 3, Tf,0, di-z-Bu-4-Me-pyridine.

disarmed, respectively), using silver triflate as promoter.'* Selenoglyco-
sides can thus be selectively employed with thioglycoside acceptors
to afford thioglycosidic disaccharide donors directly. Even disarmed
selenoglycosides [those bearing O(2) acyl groups] such as the seleno-
phenyl rhamnoside 6 can be activated over armed [bearing O(2)
benzylic]thioglycosides such as 7 to afford specific disaccharides (e.g. 8)
(see Scheme 1.3).15 Additionally, organic bases (collidine or 1,1,3,3-
tetramethylurea) and silver triflate provide a catalyst system which allows
glycosyl bromides (e.g. 9) to be used as donors with selenoglycosidic
acceptors (e.g. 10). Furthermore, trichloroacetimidates can be activated
over selenoglycosides using TMSOTf as catalyst. Similar selectivities

OBn
SePh OBn
i (0} 0}
AcO 0 « HOo o ', o BnO
AcO AcO BnO SEt
OAc BHOS.E[ AcO -
: OAc
6 7 8
OAc OAc
Ph—\"O " OBn
AcO 0 0 O i AcO (¢}
AcO Br HO SePh —— AcO o] (0]
PhthN PhthN Phthy  BnO ScPh
BnO
9 10 1

Scheme 1.3 (i) AgOTf, K,COs; (ii) AgOTT, collidine or 1,1,3,3-tetramethylurea.



