Design, Programming,
and Interfacing
SECOND EDITION

JOHN UFFENBECK

The 80x86 Family

Design, Programming,
and Interfacing

Second Edition

JOHN UFFENBECK
Wisconsin Indianhead Technical College

Prentice Hall
Upper Saddle River, New Jersey Columbus, Ohio

Library of Congress Cataloging-in-Publication Data

Uffenbeck, John E.

The 80x86 Family : design, programming, and interfacing / John

Uffenbeck. — 2nd ed.

p. cm.

Rev. ed. of: The 8086/8088 Family : design, programming, and interfacing. c1987.
Includes index.
ISBN 0-13-362955-4
1. Intel 80x86 series microprocessor. 1. Title.

QA76.8.129U34 1998

004.165—dc21 97-3741
CIP

Editor: Charles E. Stewart, Jr.

Production Editor: Rex Davidson

Design Coordinator: Julia Zonneveld Van Hook

Cover Designer: Julia Zonneveld Van Hook

Cover Art: © Frank Shirley/SuperStock

Production Manager: Deidra M. Schwartz

Marketing Manager: Debbie Yarnell

Production Supervision: Custom Editorial Productions, Inc.

This book was set in Times Roman and Helvetica by Custom Editorial Productions, Inc., and was
printed and bound by R.R.Donnelley & Sons. The cover was printed by Phoenix Color Corp.

© 1998, 1987 by Prentice-Hall, Inc.
Simon & Schuster/A Viacom Company
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 21
ISBN 0-13-3b2955-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Preface

This is the second edition of a book previously titled The 8086/8088 Family: Design, Pro-
gramming, and Interfacing. As the new title suggests, it has been expanded to include cov-
erage of all of the 80x86 processors, from the 8-bit 8088 to the 16-bit 8086 and 80286 and
the 32-bit 80386, 80486, Pentium, and Pentium Pro processors.

As in the first edition, this edition is more than a survey of Intel microprocessor chips.
Think of these processors as the vehicles that will allow you to explore the real world of
microcomputer technology. To appreciate the trip, you should be familiar with digital
logic circuits and the binary and hexadecimal numbers systems. In addition, a familiarity
with DOS and Windows will come in handy when the software features of the processors
are explored.

Philosophy

If this book has an underlying philosophy, it is to stand back and observe the micro-
processor as one component in a microcomputer system. In the case of the 80x86 proces-
sors, that system—thanks to IBM—has become known as the PC or Personal Computer.
This philosophy is embedded throughout the book. Particular attention has been paid to
developing examples based on the PC architecture. The software chapters, for example,
use DEBUG, a utility commonly available with MS-DOS for program development. The
program examples are all designed to run on a PC and utilize calls to the BIOS services
and MS-DOS functions of the PC.

The hardware chapters focus on chips and circuits used in the PC. Chapter 8, for ex-
ample, describes the PC’s parallel printer interface. Software drivers for this circuit using
programmed I/O and interrupt-driven I/O are also included. Chapter 9 includes a detailed
description of the 8259A PIC (Programmable Interrupt Controller) still used by the PC
today (in integrated form). Chapter 10 focuses on serial I/O and provides detailed coverage
of the 16550 UART (Universal Asynchronous Receiver/Transmitter). Also included in
this chapter is a description of the popular modem standards and the Hayes AT command

PREFACE

set. Chapter 11 describes the architecture of the PC and the different bus systems, in-
cluding ISA, EISA, MCA, VESA, PCI, SCSI, and USB.

Organization

Each chapter presents a consistent interface to the reader. The Outline lists the major sec-
tions of the chapter, followed by a list of Objectives. The chapter Overview gives a quick
look at the chapter and tries to answer the question, “Why is this chapter important?” Each
section is numbered (1.1, 1.2, 1.3, and so on) and includes a brief introduction that reiter-
ates the objectives to be covered. To measure your understanding, a set of Self-Review
questions (with answers) is also provided.

Each chapter ends with a Self-Test, typically twenty questions requiring short answers
readily found in the text. More thought-provoking questions are included in a separate sec-
tion entitled Analysis and Design Questions. These are keyed to the appropriate section in
the chapter.

Changes from the Previous Edition

This new edition represents a major redesign of the original textbook. A brief summary of
these changes follows.

@ Chapter 1 has been split into two chapters. The first provides a history of computing
from ENIAC to the present day. Also included is an overview of each processor in the
80x86 family. The second chapter provides a review of the binary and hexadecimal
number systems and a description of various computer codes. Computer programming is
also explained as well as computer operating systems (updated to include Windows).

® Chapter 2 of the first edition has also been split into two new chapters. One focuses on
the specific architecture of each 80x86 processor, the other provides an overview of the
80x86 processor instruction sets. New in this chapter is a description of the MS-DOS
BIOS services and function calls.

® The software chapters of the first edition have been completely redone. Two chapters
are now provided. Chapter 5 illustrates 80x86 programming techniques. Seven program
examples are provided in that chapter, each developed using a unique outline approach
and coded using DEBUG. Chapter 6 explains 80x86 assembly language using Mi-
crosoft’s Programmer’s Workbench. Techniques for creating COM and EXE files are
provided as well as the complete design of a simple game program.

® Chapter 7 on memory has been updated to include flash memory, SIMMs and DIMMs,
EDO RAM, synchronous DRAMs and SRAMs, and PAL address decoders.

® The input/output coverage has been expanded to two chapters. Chapter 8 covers parallel
I/O and programmed I/O techniques. Chapter 9 covers interrupt driven I/O and the
8259A PIC. DMA techniques are also included in this chapter.

® Chapter 10 on data communications now includes coverage of the 16550 UART and
common modem standards. The AT command set is also covered.

® Chapter 11 of the first edition has been replaced with a new chapter that describes the ar-
chitecture of the PC and the common bus systems. This includes the ISA and extended
ISA buses, the microchannel architecture, and the EISA, VESA, and PCI buses. Two
I/O buses are also covered, SCSI and USB.

PREFACE v

Included Disk

In your book you will find a diskette that includes the assembly listings for all of the programs
in the book. These are organized by chapter, with the figure name used as the program name.
In addition, you will also find a copy of DEBUG32 on this disk. This is an enhanced ver-
sion of the popular DEBUG utility supplied with MS-DOS. It allows full access to the 32-
bit registers and addressing capabilities of the 80x86 processors. In addition, it can also
be used for debugging protected-mode programs. A special thanks to Rob Larson and
Michael Schmit of Quantasm Corporation for their permission to include this program.

Acknowledgments

I would like to thank Charles Stewart and Kim Gundling of Prentice Hall, Inc., who en-
couraged me to resurrect this book nearly ten years after the first edition appeared. I would
also like to thank Rex Davidson, also of Prentice Hall, and Jim Reidel of Custom Editorial
Productions, Inc., the two editors who assisted me with the final production of this book.
These are the people I spent the most time with, especially Jim, who had to put up with my
last minute changes!

I am grateful to Intel Corp., Texas Instruments, Inc., Advanced Micro Devices, Na-
tional Semiconductor Corp., Quantasm Corp., BYTE Publications, Hitachi America Ltd.,
and Addison Wesley Longman Ltd. for permission to include many of the data sheets and
technical drawings presented throughout the book. I would also like to thank Al Subera of
ADS Photography for many of the photographs that illustrate the book—and the Smith-
sonian Institution for the chapter-opening photographs that highlight significant computers
from the past.

Finally, I want to give my special thanks to my students at Wisconsin Indianhead
Technical College. Instead of using a “real” book, these folks have had to lug around a
manuscript for the last several years. Their questions and comments have been available to
me as [prepared this new edition.

Final Thoughts

I first started teaching microprocessors at Hartnell College in 1976. We used a “briefcase”
computer-trainer based on the 8080, called the MST-80. Microcomputer technology has
come a long way since those days. To compare the Pentium Pro with the 8080 is to com-
pare the Space Shuttle with the Wright Brothers’ first powered airplane. Yet somehow we
must come to grips with this incredible, rapidly accelerating technology. It is exciting, but
frightening. Take a summer off and you may find yourself hopelessly behind. I hope you
find this book useful as you attempt to hang on to the fast-moving technology train.

John Uffenbeck
Wisconsin Indianhead Technical College

Contents

MICROCOMPUTERS AND MICROPROCESSORS 1
1.1 The Stored Program Concept 2
1.2 Types of Computers 8
1.3 The 80x86 Family of Microprocessors 21
COMPUTER CODES, PROGRAMMING,

AND OPERATING SYSTEMS 35
2.1 The Binary and Hexadecimal Number Systems: A Quick Review 36
2.2 Computer Codes 46
2.3 Computer Programming 54
2.4 Computer Operating Systems 59
80x86 PROCESSOR ARCHITECTURE 71
3.1 The 8086 and 8088 73
3.2 Segmented Memory 79
3.3 The 80386 87
3.4 The 80486 99
3.5 The Pentium 109
3.6 The Pentium Pro 113
INTRODUCTION TO 80x86 PROGRAMMING 127
4.1 80x86 Instruction Set 128
4.2 Machine Code Programming with DEBUG 147
4.3 MS-DOS Functions and BIOS Calls 156

vii

viii

10

CONTENTS

80x86 PROGRAMMING TECHNIQUES 173
5.1 Program 5.1: Displaying the ASCII Character Set 175
5.2 Program 5.2: BCD to ASCII Conversion 180
5.3 Program 5.3: Two-Digit BCD Adder 183
5.4 Program 5.4: 80x86 Music Machine 191
5.5 Program 5.5: Testing the Alternate Keys During Boot-Up 197
5.6 Program 5.6: Floppy Disk Media Check 201
5.7 Program 5.7: Programmable Time Delay 208
80x86 ASSEMBLY LANGUAGE PROGRAMMING 221
6.1 The Edit, Assemble, Link, Test, and Debug Cycles 222
6.2 Debugging Assembly Language Programs 232
6.3 Working with Separate Code, Data, and Stack Segments 235
6.4 Programming Strategies—A Game Program Example 247
MEMORY CHIPS AND MEMORY INTERFACING 267
7.1 Main Memory Technologies 267
7.2 80x86 Processor Memory Read/Write Bus Cycles 285
7.3 80x86 SRAM Interface Examples 294
7.4 Address Decoding Techniques 308
7.5 DRAM Specifications and Timing 323
INPUT/OUPUT TECHNIQUES: PROGRAMMED 1/0 343
8.1 Parallel /O 344
8.2 Programmed I/O 354
8.3 The 8255A Programmable Peripheral Interface 364
INPUT/OUPUT TECHNIQUES: INTERRUPTS AND DMA 383
9.1 Interrupt-Driven I/O 384
9.2 The 8259A PIC 390
9.3 Direct Memory Access 419
DATA COMMUNICATIONS 429
10.1 Serial I/O 431
10.2 The EIA RS-232 Serial Interface Standard 441
10.3 The PC16550D Universal Asynchronous Receiver/Transmitter 454
10.4 Modems 471

10.5 Error Detection and Correction

483

11

CONTENTS

ix

PERSONAL COMPUTER ARCHITECTURE

AND BUS SYSTEMS 497
11.1 The PC/XT and AT 499
11.2 Microchannel and Extended ISA 511
11.3 Local Bus: VESA and PCI 519
11.4 I/0O Buses: SCSI and USB 533
APPENDIX A: MS-DOS BIOS Services and Functions 547
APPENDIX B: PC/XT/AT Parallel Port 555
INDEX 559

1 Microcomputers and
Microprocessors

One of the first practical computers was ENIAC (Electronic Numerical Integrator and Computer). Built
in 1945, it contained nearly 17,000 vacuum tubes, weighed more than 30 tons, and required 1500 square
feet of floor space. It is interesting to note that in 1949, Popular Mechanics magazine predicted that
“computers in the future may perhaps only weigh 1.5 tons!” (Photo courtesy of Smithsonian)

Outline

1.1 The Stored Program Concept
1.2 Types of Computers
1.3 The Intel 80x86 Family of Microprocessors

Objectives
After completing this chapter you should be able to:

1. Draw a block diagram of a stored program computer.
2. Explain the fetch and execute processing cycle of a stored program computer.
3. Define the role of the data, address, and control buses in a stored program computer.

1.1

MICROCOMPUTERS AND MICROPROCESSORS

4. Trace the evolution of the computer from the vacuum tube era to the microprocessor.

Identify significant computers that have been built over the years.

6. Explain the difference between a microprocessor, a microcomputer, and a micro-

controller.
7. Compare digital signal processors (DSPs) with conventional microprocessors.
Trace the evolution of Intel microprocessors from the 8086 through the Pentium Pro.
9. Compare the bus widths and internal register sizes for all of the processors in the

80x86 family.

10. Explain the difference between the 80x86 processor’s Real, Protected, and Virtual
8086 modes of operation.

11. Explain the difference between a microprocessor second source and a clone.

ol

o

Overview

This chapter presents a core of digital computer principles upon which the following chap-
ters can build. In it you will find a brief introduction to much of the terminology you will
be reading about in the later chapters. You will also learn about the evolution of the com-
puter from the vacuum tube-based ENIAC to Cray supercomputers. The chapter concludes
with brief descriptions of the microprocessors in the Intel 80x86 family. These descrip-
tions will be expanded upon in later chapters.

The Stored Program Concept

Introduction

As complex as today’s computer systems are, most are still based on a design principle
first proposed by Dr. John Von Neumann in 1946. Now taken for granted by most com-
puter users, Von Neumann’s idea defined the architecture to be used by all computers for
the next 50 years.

In this section we:

e Draw a block diagram of a stored program computer
* Explain the fetch and execute processing cycle of a stored program computer
* Define the role of the data, address, and control buses in a stored program computer

The Stored Program Concept Is Born

ENIAC. One of the first digital computers was a machine called ENIAC (Electronic
Numerical Integrator and Computer). It was designed and built in 1946 at the Moore
School of Electrical Engineering at the University of Pennsylvania. ENIAC measured over
18 ft. high and was 80 ft. long. It contained nearly 18,000 vacuum tubes, weighed more
than 30 tons, and required 1500 square feet of floor space. More than 200,000 man-hours
went into its construction (500,000 solder connections alone were required). It was pro-
grammed by setting up to 6000 switches and connecting cables between the various units

of the computer.

THE STORED PROGRAM CONCEPT 3

While ENIAC was under construction, Dr. John von Neumann, also of the Moore
School of Electrical Engineering, wrote a paper in collaboration with A.-W. Burks and
H.H. Goldstein that would define the architecture to be used by nearly all computers from
that day on.! Now called the stored program concept, von Neumann suggested that rather
than rewire the computer for each new task, the program instructions should be stored in a
memory unit, just like the data. The resulting computer would then be software program-
mable rather than hardware programmable.

One of the first stored program computers to be built was called EDVAC (Electronic
Discrete Variable Automatic Computer). Completed in 1952, it had a memory capacity of
1000 words of 10 decimal digits each. EDVAC was superior to ENIAC because it could be
programmed much more efficiently and used a paper tape input device. At about this same
time, the first random access core memory appeared. The first generation of computers
was now well under way.

The Stored Program Processing Cycle

Fetch and Execute. Figure 1.1 is a block diagram of a basic stored program computer.
There are three major parts to this system: (1) The central processing unit (CPU), which acts
as the “brain” coordinating all activities within the computer; (2) the memory unit, where
the program instructions and data are temporarily stored; and (3) the input/output (I/O) de-
vices, which allow the computer to input information for processing and then output the result.

At one time, the CPU of a computer was constructed using many different logic cir-
cuits and several circuit boards. Today, all of this circuitry has been reduced to a tiny (typ-
ically 1/4 inch on a side) silicon chip, or integrated circuit (IC), called the microprocessor.
The entire computer, including microprocessor, memory, and I/O, is called a microcom-
puter. The Intel microprocessors studied in this book derive their heritage from a chip
whose part number was 8086. Subsequent versions of this chip have been numbered
80286, 80386, and 80486. The term 80x86 is therefore used to describe the family of com-
patible Intel microprocessors. (Section 1.2 describes the evolution of the microprocessor
and microcomputer in more detail.)

The basic timing of the computer is controlled by a square wave oscillator, or clock
generator circuit. This signal is used to synchronize all activities within the computer, and
determines how fast the program instructions can be fetched from memory and executed.

As shown in Figure 1.1, the CPU contains several data registers (flip-flops wired in
series with each other). Some are general purpose and are used for storing temporary in-
formation. Others are special purpose. The accumulator, for example, is reserved for per-
forming complex math operations such as multiply and divide. On 80x86 microprocessors,
all data intended for the I/O devices must pass through this register.

The basic processing cycle begins with a memory fetch or read cycle. The instruction
pointer (IP) register (also called the program counter) holds the address of the memory
cell to be selected. In computerese, it “points™ at the program instruction to be fetched. In
this example, IP is storing the address 672,356, and the binary equivalent of this address is
output onto the system address bus lines and routed to the memory unit.

'In Section 1.2 we discuss parallel processors, which offer an alternative to the von Neumann architecture.

4 MICROCOMPUTERS AND MICROPROCESSORS

Figure 1.1 The stored program computer consists of three units: the CPU, memory, and I/O devices.

Memory unit .
<8 bits—

|—|1:||—| e — 1,048,575)
(o,
Clock oO——o
generator O—
64 672,356
Y o
O—
— N\ Address O
o r— = #{System address bus ¥ selector/ o System
ﬁ;a;;rucuon pointer | decoder e memory
! o— 6
[emse--— i ;
o— 4
‘ Oo— 3
\ O—— 2
Instruction register N o— 1
\ O Location0
N

Instruction decoder

Arithmetic 3
logic unit

oF

?Systgin control bus W m
; '; Memory read ’7 IS —| Memory write
c;/ ’/,:}’ 770 V7 //L///
/O read I/O write

N o 07 7%

1/0O write

< Syétem data bus

AN

_Internal data bus

\

\

i
()

\ | /O devices: Printer Keyboard Video monitor | Floppy disk drive
N\ o o
/O port Selector/decoder

Central processing

unit (CPU)

The memory unit consists of a large number of storage locations, each with its own
unique address. Because the CPU can randomly access any location in memory, the term
random access memory (RAM) is often used. In this example, we assume each memory lo-
cation is 8 bits wide, referred to as a byte. This memory organization is typical for most mi-
croprocessors today.”

216-, 32-, and 64-bit microprocessors can fetch 2, 4, and 8 bytes, respectively, in one cycle. We still describe the
memory capacity of these processors in bytes, however.

THE STORED PROGRAM CONCEPT 5

An important characteristic of RAM is its volatility. This means its contents will be
lost when power is turned off. Because of this, a portion of the memory unit is often built
using read-only memory (ROM) chips. The program stored by a ROM is permanent, and
therefore not lost when power is removed. As the name implies, the data stored by a ROM
can only be read, not written. A special program is required to write data into a ROM.
(Chapter 2 explains the role of the boot ROM in a typical computer; Chapter 7 provides
more detail on ROM programming.)

The memory unit’s address selector/decoder circuit examines the binary number on
the address lines and selects the proper memory location to be accessed. In this example,
because the CPU is reading from memory, it activates its MEMORY READ control
signal. This causes the selected data byte in memory to be placed onto the data lines and
routed to the instruction register within the CPU.

Once in the CPU, the instruction is decoded and executed. In this example, the in-
struction has the decimal code 64, which (for an 80x86 microprocessor) is decoded to be
INC AX—increment the accumulator register. The arithmetic logic unit (ALU) is therefore
instructed to add 1 to the contents of the accumulator where the new result will be stored.
In general, the ALU portion of the CPU performs all mathematical and Boolean logic
functions.

With the instruction complete, the cycle repeats, beginning with a new instruction
fetch cycle. The control logic in the CPU is wired so that register IP is always incremented
after an instruction fetch; thus the next sequential instruction in memory will normally be
accessed. The entire process of reading memory, incrementing the instruction pointer, and
decoding the instruction is known as the fetch and execute principle of the stored program
computer.

The Instruction Set. 1t is the job of the instruction decoder to recognize and activate the
appropriate circuits in the CPU needed to carry out each new instruction as it is fetched
from memory. The list of all such instructions recognizable by the decoder is called the
instruction set. Microprocessors in the 80x86 family are known as complex instruction set
computers (CISC) because of the large number of instructions in their instruction set (more
than 3000 different forms). Some recent microprocessors have been designed to have only
a small number of very fast executing instructions. Computers based on this concept are
called reduced instruction set computers (RISC). (RISC and CISC are discussed in more
detail in Section 1.2.)

Modern CPUs. Most microprocessor chips today are designed to allow the fetch and
execute cycles to overlap. This is done by dividing the CPU into an execution unit (EU)
and a bus interface unit (BIU). The BIU’s job is to fetch instructions from memory as
quickly as possible and store them in a special instruction queue. The EU then fetches
instructions from this queue, not from memory. Because the fetch and execute cycles are
allowed to overlap, the total processing time is reduced.

Some processors have a pipelined execution unit that allows the decoding and execu-
tion of instructions to be overlapped, further increasing processing performance. Intel’s
latest processor, the Pentium Pro, has a 12-stage pipeline with three engines: the Fetch/ De-
code unit, the Dispatch/Execution unit, and the Retire unit. This architecture is referred
to as superscaler. Superscaler microprocessors can process more than one instruction
per clock cycle. (Chapter 3 discusses the architecture of the 80x86 family of processors in
detail.)

MICROCOMPUTERS AND MICROPROCESSORS

Three-Bus System Architecture

8-, 16-, 32-, and 64-Bit Buses. A collection of electronic signal lines all dedicated to a par-
ticular task is called a bus. In Figure 1.1 there are three such buses: the address, data, and
control buses. This three-bus system architecture is common to nearly all microcomputer
systems.

The Data Bus. The width of the internal data bus in bits is usually used to classify a
microprocessor. Thus, an 8-bit microprocessor has an 8-bit data bus, a 16-bit processor has
a 16-bit data bus, etc. The width of the data bus determines how much data the processor
can read or write in one memory, or I/O, cycle.

The width of the internal data bus (see Figure 1.1) is usually the same as the external
bus—but not always. The 80386SX processor, for example, has a 32-bit internal data bus,
but externally the bus is only 16 bits wide. This means the 80386SX will require two
memory read operations to input the same information that the 80386 (with matching 32-
bit internal and external data buses) inputs in one memory read cycle. The result is that the
80386SX operates less efficiently than the 80386.

The Pentium and Pentium Pro processors, on the other hand, have an external data bus
width of 64 bits, but a 32-bit internal data bus. These chips are data processing engines,
capable of executing two or three instructions per clock cycle, with clock rates greater than
200 MHz. The expanded data bus width is needed to keep these chips supplied with data.

Memory Banks. You may be wondering how a 64-bit (or 32-bit or 16-bit) processor can
access an 8-bit-wide memory. The “trick” is to divide the memory into banks. The 64-bit
Pentium and Pentium Pro, for example, require eight banks of memory, with each bank or-
ganized as one byte wide.® Bank enable signals are output by the processor to specify which
bank (or banks) are to be accessed. (Chapter 7 discusses memory interfacing in detail.)

Example 1.1

An 80486 processor has its memory organized as shown in Figure 1.2. Determine the total amount of
memory available to this processor.

Solution

The 80486 has a 32-bit data bus, and therefore requires four banks of memory as shown. Note that
each bank is organized as 1,048,576 8-bit bytes (1 megabyte or 1 MB). Four bank enable signals
(BEO-BE23) are required to allow selection of each individual bank. The total amount of memory is:

4 banks x 1 MB/bank = 4 MB

The Address Bus. The address bus is used to identify the memory location or I/O device
(also called /O port) the processor intends to communicate with. For the 80x86 family of
processors, the width of this bus ranges from 20 bits for the 8086 and 8088, to 32 bits for
the 80386/486 and Pentium, and 36 bits for the Pentium Pro.

*These memory banks usually consist of memory chips soldered to small circuit boards called SIMM:s (single in-
line memory modules) or DIMMs (dual in-line memory modules). Thirty-pin SIMMs are 8 bits wide; 72-pin
SIMMs are 32 bits wide. DIMMs are 64 bits wide.

THE STORED PROGRAM CONCEPT 7

Figure 1.2 Memory organization for the 80486 microprocessor. Four 8-bit (one-byte) banks are
required. In this example, each bank stores 1 MB, thus providing a total of 4 MB of memory to the
processor. Bank enable signals are used to select each memory bank.

8-bits wide (one byte)

Bank 0 Bank 1 Bank 2 Bank 3

1,048,576 locations

BEO BE1 BE2 BE3

Example 1.2

How many different memory addresses can an 8086 output? Repeat for a Pentium processor.

Solution
The 8086 has a 20-bit address bus and can therefore output all combinations of addresses from 0000
0000 0000 0000 0000 to 1111 1111 1111 1111 1111. This corresponds to 1,048,576 different ad-
dresses (22°) or 1 MB (one megabyte).

The Pentium has a 32-bit address bus and can therefore access

212 % 220 = 4096 x 1 MB or 4096 MB (four gigabytes)

The Control Bus. How can we tell if the address on the bus is a memory address or an
I/O port address? This is where the control bus comes in. Each time the processor outputs
an address, it also activates one of four control bus signals. These are:

1. MEMORY READ
2. MEMORY WRITE
3. /O READ

4. I/0 WRITE

Thus, if the 8086 address bus holds 1010 0100 0010 0110 0100 (672,356,,) and the
MEMORY READ signal is active, the data byte in memory location 672,356 will be se-
lected to be read. The memory unit responds by outputting the contents of this location
onto the data bus.

The control bus also identifies the direction of data flow on the data bus. When MEM-
ORY READ or I/O READ is active, data is input to the processor. When MEMORY
WRITE or I/O WRITE is active, data is output by the processor; that is, the control bus sig-
nals are defined from the processor’s point of view.

Summary. The microprocessor manages the flow of data between itself, memory, and
the I/O ports via the address, data, and control buses. The control and address buses are
output lines (only) but the data bus is bidirectional.

8 MICROCOMPUTERS AND MICROPROCESSORS
Self Review 1.1 (Answers on page 32)
1.1.1 The three major blocks of a stored program computer are the and
the .
1.1.2 The instruction pointer:
(a) Holds the address of the next memory location to be fetched into the instruction register.
(b) Is located within the processor.
(c) Is automatically incremented as part of the basic fetch and execute cycle.
(d) All of the above.
1.1.3 Complex arithmetic operations are performed in the
with results stored in the :
1.1.4 A microcomputer system with a 24-bit address bus could potentially access
memory locations.
1.1.5 The memory unit for an 80486 microprocessor requires ___ banks of memory.
1.1.6 When the processor writes data to the video terminal in Figure 1.1the -
control bus signal will be activated.
1.1.7 Of the three system buses,onlythe ___ bus is bidirectional.
1.2 Types of Computers

Introduction

The first generation of computers were described in terms of hundreds of feet of floor space,
tons of weight, and thousands of vacuum tubes. Reliability was often measured in hours or
even minutes. Loading a new program required tens of man-hours to rewire the computer,
and could only be done by trained engineers and technicians. Today we have desktop com-
puters, laptop computers, and even notebook computers. We describe the processor in terms
of submicron line spacings, millions of transistors, and onboard floating-point processors.
Indeed, the evolution of the computer has occurred so rapidly that it is sometimes called a
revolution.
In this section we:

* Trace the evolution of the computer from the vacuum tube era to the microprocessor.

* Identify significant computers that have been built over the years.

» Explain the difference between a microprocessor, a microcomputer, and a microcontroller.
» Compare digital signal processors (DSPs) with conventional microprocessors.

The Vacuum Tube Era

IBM Emerges. First-generation computers were massive machines based on vacuum
tube technology. They occupied entire rooms and required an air-conditioned environment
to operate reliably. In fact, because the average life of a vacuum tube was 3000 hours, and
several thousand tubes were required to build a machine, some predicted that no useful
work could ever be done—technicians would constantly be tracking down and replacing
bad tubes! Nevertheless, in 1951, Remington-Rand delivered the first Univac I (UNIVersal
Automatic Computer) to the Bureau of the Census. In 1952, CBS used a Univac I to pre-
dict the defeat of Adlai E. Stevenson by Dwight D. Eisenhower in the presidential election.

International Business Machines (IBM) reluctantly entered the computer field in 1952
with its Model 701 Data Processing System. IBM’s founder, Thomas Watson, Sr., had to

