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INTRODUCTION

Padé approximants and continued fractions are typical examples of old domains (since
continued fractions can be traced back at least to Euclid’s g.c.d. algorithm more than 2000 years
ago) which are now in full vitality. This is due to their numerous applications in number theory,
cryptography, statistics, numerical analysis, special functions, digital filtering, signal processing,
fractals, fluid mechanics, theoretical physics, chemistry, engineering, etc. This renewal of interest
is also due to their intimate connections with other important topics such as orthogonal
polynomials (another old subject now again in full vitality), rational approximation, Gaussian
quadratures, extrapolation and convergence acceleration methods, solution of differential equa-
tions, projection methods for solving systems of linear and nonlinear equations, and so on. A
complete bibliography on these domains would contain more than 6000 references, many
international conferences took place, and many books were published these past few years.

Since the subject is very rapidly developing, it seemed that a book gathering carefully selected
papers presenting the last results would be of interest. This book comes from a special issue of
the IMACS journal Applied Numerical Mathematics (Vol. 4, Numbers 2—4, June 1988) plus some
new contributions specially written for it. All the papers contained in this book are original and
important.

I would like to thank all the authors, renowned experts in these fields, for their enthusiastic
help.

Claude Brezinksi

Laboratoire d’Analyse Numérique et
d’Optimisation

Université des Sciences et Techniques de
Lille Flandres-Artois

59655 Villeneuve d’Ascq Cedex, France
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Continued Fractions and Padé Approximants, 1-9 .
C. Brezinski, ed.

ON THE ASYMPTOTIC BEHAVIOUR OF CONTINUED FRACTIONS

Claude BREZINSKI
Laboratoire d’Analyse Numérique et d’Optimisation, UFR IEEA - M3, Université de Lille 1,
59655 Villeneuve d’Ascq Cedex, France

The asymptotic behaviour of ratios of differences of two convergents of a continued fraction is studied. In the
first section the case of general continued fractions is considered, while in the second section limit k-periodic
ones are treated. Necessary and sufficient conditions are obtained. The behaviour of ratios of the error is also
studied and some acceleration methods are given.

Introduction

The asymptotic behaviour of limit periodic continued fractions is well known. In particular
Perron proved that they converge linearly [6]. The reciprocal of this result was obtained only
recently [1]. In Section 1 of this paper the asymptotic behaviour of general continued fractions
will be studied while Section 2 will be devoted to limit k-periodic continued fractions. Surpris-
ingly all the proofs are very elementary, some of them even obvious, and it is, again, a strange
situation, often observed in research, that they were not found before. In passing, a straightfor-
ward proof of the main result of [1] on limit periodic continued fractions is obtained.

We shall consider continued fractions with complex elements and denominators all equal to
one, that is, continued fractions of the form
a, a, as
1 +1—a, +1—a; +

C=b,+ (1)
This assumption does not restrict the generality since it is always possible to transform a
continued fraction into an equivalent one of the previous form if and only if all its partial
denominators are different from zero [4].

In the sequel C will always denote the above continued fraction and C, its convergents. In
general, C will not be assumed to converge but, if so, C will be its value.

1. General results

In this section we shall give some general results on the asymptotic behaviour of continued
fractions without any special assumption on their elements.

Theorem 1.1. Let 0 <p, <p, < --- be an infinite strictly increasing sequence of positive integers,
let

’ ’ ’

4 a as
1 +1-a5 +1—aj +

C'=bj+
be the continued fraction with convergents C, = Cp", n=0,1,...,and let r € C.

© 1990 — Elsevier Science Publishers B.V. (North-Holland)



2 C. Brezinski / Asymptotic behaviour

A necessary and sufficient condition that

lim 2P —
nsow G, —GC, |
is that
lim a, = —r.
n— oo

Proof. We have by=C,, a,=C, —C,, and
a,=(c, —¢,)/(C, —C, ). n=2.3,...

Pn—1 Pn Pn—1

Thus the result immediately follows. O

This result does not assume the convergence of the continued fractions C and C’. Using some
theorems due to Delahaye [2] we immediately obtain the following results for C’.

Theorem 1.2. We assume that ¥n, C, # C, ;.
(i) Let reC, |r| # 1. 3x € C such that (C,,, — x)/(C, — x) converges to r iff AC,.,/AC,
converges to r.
(i) Let reC, |r| <1. If AC/,,/AC, converges to r, then (C,)) converges to a limit C' and
(C/.,—C")/(C]—C!) tends to r.
(iii) Let r€C, |r| > 1. If AC,,,/AC, converges to r, then
lim |C/| = +o0

n— oo

and Vx€C, (C].,— x)/(C, — x) converges to r.

Let us remark that the statement (i) does not imply the convergence of (C)) to x.
We shall now give a result on the continued fraction C itself. We have the following theorem.

Theorem 1.3. Let 0 < p,<p, < --- be an infinite strictly increasing sequence of positive integers
and let r € C. A necessary and sufficient condition that

. Cp,. - Cprl

im ————=r,

n—ee CP..—l - Cp,,—l

is that

lima, = —r.
Pn
n—oo

Proof. Since the denominators of the convergents of C are all equal to one,

C,=(1-a,)C,_,+a,C n=2,3,...,

n~n—2»

with Gy = b, and C; = b, + a,.
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Therefore,
a,= —ACn‘l/AC -2

and the result follows from replacing the index n by p,. O

2. Limit k-periodic continued fractions

Let us begin with a remark. In Theorem 1.1, if p,=n, then a, =a,. Thus a necessary and
sufficient condition for AC,/AC,_; to have a limit is that the continued fraction C be limit
periodic. Since the continued fraction is equivalent to
a,/b, a,/b\b, as/b,bs .

1 + 1 + 1 +

by +
with b,=1—a,,
lim a,/b,_b,= —r/(1 +r);=a,

n— oo

which is exactly the result given in [1] with a more complicated proof. Moreover, if a # — 4 + ¢
with ¢ < 0, the continued fraction converges and |r |+ 1.

Let us now turn to limit k-periodic continued fractions. We recall that if 3r,,...,r, , €C
such that
lima, . .=rt,, m=0,1,...,k—1,

n— o0
then the continued fraction C is said to be limit k-periodic and k is its period. Of course Vm,
Fon = Tt k-

Let us first mention that our assumption on (1) that Vn, B,=1 does not restrict the
generality. Indeed, if we consider the general limit k-periodic continued fraction

_ U U
C=v,+— — ce (2)
Uy + 0y +
with
lim u,, ., =u'"™,
n— oo
and

< — ,(m)
llm Uptnk =0 ’

for m=0,..., k — 1, then, as proved by Lembarki [5],
lim A, =0"/(1+r"),
where h, = B,/B, , and
r=lim AGC, ,x—1/AC, . pp>-

But (2) is equivalent to

n uy /v, a, a; _ dyu, dd,u,
Vo — — cee =py+
1 +1—a, +1—a; + dw, + dw, +
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with d,=1/h,. Thus

lim a,,,,, = lim — Umine u™ (14 r)(1 + rm=D) fptmptm =1,

n—o n—oo hm+nkhm+nk—l
which shows that (3) is limit k-periodic and that Vn, B,=1. Therefore any general limit
k-periodic continued fraction of the form (2) can be transformed into an equivalent limit
k-periodic continued fraction of the form (3), and thus all the results stated in this section apply
to (2).

The first result on limit k-periodic continued fractions immediately follows by setting

p, = m + nk in Theorem 1.3.

Theorem 2.1. Let ry,..., r,_, € C. A necessary and sufficient condition that
) C -C "
lim m+nk m+nk—1 =r., m=0,. ,k—l,
n—>0 “ytnk—1" Cm+nk—2
is that
lima,  ,=-r, m=0,...,k—1.
n— oo

We shall now examine the asymptotic behaviour of some other similar ratios.

Theorem 2.2. Let C be a limit k-periodic continued fraction. We set

Ak—l,m+(n—1)k+1 —1-g A+ (n—1)k+2 Appink
LT Cmt(n—1k+1 _ Tt s
Bk—l‘m+(n~l)k+1 1 am+(n—1)k+2 + + 1 _am+nk
with ag=1— b, and
/7
. A mig-ner1 A 1w
lim =—
n—oo Bk—l,m+(n~l)k+1 Bk—l,m+l
=1 =y + Tm+2 Vot k
= o P S
1_rm+2 + + l_rm+k

We assume that B\, i1 #0 and that B, ., exists and is different from zero for m =
O,...,k—1. Then, Vm,

Cm+(n+l)k_ Cm+nk k
=(=1)rp - r_s

lim

n— oo m+nk—Cm+(n—1)k

Proof. We know that [6],
C,—-C, =(-1)""a,--a

Pn Pn-1 Pn—]*lBPn*an—l-Pnfl*’l'

Thus, for p, = m + nk, we get

Cm+(n+l)k_ Cm+nk Bk*].m+nk+]

k
C — _(—1) am+(n—l)k+2 e am+nk+1B -
m+nk m+(n—1)k k=1.m+(n—1)k+1
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When 7 tends to infinity the ratio in the right-hand side tends to one, due to the assumptions,
and

lim Qi n—1k+2 """ k1= Tms2 """ TP 1= o 777 Ti—1 O

h— oo

Of course the reciprocal of this theorem cannot be true. For example, if 3r € C such that for
m =0 and 1,

”lir(:o (Cm+2n+2 - Cm+2n)/(Cm+2n - Cm+2n72) =r,

it can correspond either to a limit 1- or 2-periodic continued fraction. However, different types
of complementary results can be obtained. We first have the next theorem.

Theorem 2.3. Let C be a limit k-periodic continued fraction. Then, Vm,
C

. m+nk Cm+nk—1 _ k
lim e =(—=1)"r5 " Fe_q-
n—o Y“m+(n—1)k m+(n—1)k—1

Proof. We have

C‘m+nk—_C"m+nk—l _ Cm+nk_ Cm+nk—1 C’"*(nfl)kﬂLl B Cm+(n—1)k

2

Cm+(n~1)k - Cm+(n—1)k—1 Cm+nk—1 - Cm+nk*2 Cm+(n-1)k - Cm+(n—1)k—1

and the result follows from Theorem 2.1. O
A second type of result is the following.

Theorem 2.4. If 3r,,...,r,_, € C such that

y Cm+(n+1)k—Cm+nk
lim C =T
n— o0 m+(n+ k-1~ “m+nk—1

m=0,1,...,

then

v Cm+(n+1)k_ Cm+nk
lim =ry 1.
n— o0 m+nk Cm+(n—1)k

Proof. We have

Cm+(n+1)k - Cm+nk . Cm+(n+1)k - Cm+nk Cm+nk+] - Cm+(n71)k+l
Cm+nk - Cm+(n—1)k Cm+(n+1)k7] - Cm+nk71 Cm+nk - Cm+(n—l)k
When »n tends to infinity, this ratio tends to r, 7, 1 *** Vpppi1 =" " Th—1- O

If C is a limit k-periodic continued fraction, it is easy to prove that, under the assumptions of
Theorem 2.2, Vm,

. Cm+(n+1)k_ Cm+nk
Iim = —r
n—o0 Yypt(n+1)k—1 Cm+nk—l
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and thus the result of Theorem 2.2 follows from Theorem 2.4. It must be noticed that the factor
(—1)* is due to the fact that in some theorems r,, is the limit of a,, ., ,, while, in some others, it
is the limit of a ratio which, if the continued fraction is limit k-periodic, tends to —r,,.

The preceding results do not assume the convergence of the continued fraction C. Using some
theorems due to Delahaye [2] we immediately obtain the next one.

Theorem 2.5. Let (ry,...,7,_,) €EC* and (qq,...,q,_1) € C* such that
(B) g,+#1, G*+l .., g F]
(L) fromy = ey | # 1,
l+rg+rgr+ -+ +rgry -+ - 15, #0,
l+rn+nrnrn+ - +rnr---rn #0,

1+r_+r_rgt - tr_pg---r_3%0

with
g —1
(LB) o=go———
go— 1
r_q‘]z_l Fey=q g1~ 1 rei=q go—1
1= 4 I Al A -1 = Q-1 _ 7>
g, —1 Gr——1 ol g1
Fotrgr+ o g Py
(BL) q0=1+ ’
Fo+rgry + - Frgry 1o
_ rntrrn+t - +nn--rn
9 l+r1+i’17‘2+"‘+”1rz""’k-1’
By = R S U R T U
k—1 ]-+rk7]+rk—lr0+-'.+rk—1r0...r/(—3‘

(i) 3x € C such that form=0,1,..., k—1,
hm (Cm+nk+1 - x)/(Cm+nk - x) =d4m>

n— oo

iff, form=0,...,k—1,

nlin;lo (Cm+nk+2 - Cm+nk+1)/(Cm+nk+1 - Cm+nk) =l
() If 3ry,...,r._ €C satisfying (L) and such that |ryry --- r,_ 1| <1, and if, for m=
0,1,...,k—1,
lim (Cm+nk+2 - Cm+nk+1)/(Cm+nk+1 - Cm+nk) = Vo>

n— oo

then (C,) converges to a limit C and, for m=0,..., k—1,
nlLH:o (Cm+nk+] - C)/(Cm+nk - C) =4qm>

with the q,, given by (BL).
(i) If 3ry,..., 1.y €C satisfying (L) and such that |ryry -+ r,_, | > 1, and if, for m=
0,1,..., k—1,
hm (Cm+nk+2 - Cm+nk+1)/(Cm+nk+1 - Cm+nk) =T

" — 00
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then
lim ICn| = +OO’
n— oo

and Vxe€C,Vm=0,1,...,k—1,
hm (Cm+nk+1 _x)/(cm+nk_x) =4m>

n— oo

with the q,, given by (BL).

Due to the preceding results we see that limit k-periodic continued fractions can b
accelerated by applying Aitken’s A*-process to the subsequences (C,, , ,x), form=0,1,..., k—1
or, equivalently, by the transformation

(Cn+2k — Cn+k)2
+2k 2Cn+k + Cn ’
The continued fraction (1) can also be accelerated by a so-called modification of the form
At wad, Gt w,Cy
B, +w,B - h,+w, ’

n“n—1

Cr=¢

n n+2k C
n

n=0,1,....

S,(w,) =

n=0,1,....

In our particular case we have Vn, h, =1, and
Sn(wn)_C__ (Cn—C)/(Cn_l“C)+W,,
c,_,—C 1+w, '

n

Thus (S,(w,)) will converge faster than (C, ;) if the numerator of this ratio tends to zero but
not the denominator.
If

; = (m)
lim a,,, . ,=a
n—oo

for m=0,..., k—1, then, by Theorem 2.1,
Lim AG, ., —1/AC, pp—r= —a'"™,
n— oo

and, by Theorem 2.5,
lim (Cm+nk - C)/(Cm+nk—l - C) =4m-1>

n—oo
with
B —gmtD 4 qon+ D g m+2) +(_1)ka(m+1) cen gimER)
dm-1 1= gm+D 4 gim+Dgm+2) _ +(_1)k+la(m+1) cel gmrk=D
Thus, if we take
Wintnk =
AC‘m+nk ACm+nk ACm+r1k+1 R AC‘n‘H—nk . ACm+nk+k—1
_ ACm+nk71 AC.'m+nk—1 A(:'m+r|k ACvm%—nk—l Aij+r1k+k—2
AC:mﬁ-nk A(;m+nk ACm+nk+] AC"m+nk AC'm+nk+k—2
1+ gows s -
AC‘m+nk—l Am+nk—1 A(:'m+nk AC‘m+nk—] A(jm+nk+k—3

Cm+(n+1)k - Cm+nk

>

Cm+(n+l)k—l - Cm+nk—1
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then
hm Wotnk = — nlLIrolo (Cm+nk - C)/(Cm+nk—l - C)’

n—occ
and the convergence is accelerated since, by the conditions (B) of Theorem 2.5, this limit is

different from —1.
Finally, for limit k-periodic continued fractions, we have obtained the following theorem.

Theorem 2.6. Let C*=C,, ;.1 —AC, 1, (Cpiii1— Cos1)/(AC, —AC,), n=0,1,.... Under the
assumptions (ii) of Theorem 2.5, (C.*) converges faster than (C,).

For k =1, this transformation reduces to Aitken’s A’-process. Otherwise, it is the so-called
T, , transformation [3].

Remark 2.7. We have [6]
Crvnsyxk = Corink A1 menk+1 T Cink1Cns nk—1Br—1 mank+15
and
1=A4r 1 pinke1t Qmsnc1Br—1.msnk+1-
Thus,
Cm+(n+1)k - Cm+nk

_‘am+nk+1Bk—1,m+nk+l = C _ C
m+nk m+nk—1

The ratio in the right-hand side is equal to

Cm+(n+l)k - Cm+(n+1)k—1 C‘m+(n+1)k——l - Cm+(n+1)k—-2 Cm+nk+] - Cm+nk

C

m+(n+1)k—1 " Cvm+(n+1)k—2 Cm+(n+1)k—2 - Cm+(n+1)k—3 Cm+nk - Cm+nk—l

Cm+(n+l)k71 - Cm+(n+1)k—2 Cm+(n+l)k~2 - Cm+(n+1)k—3 Cm+nk+l - Cm+nk

Cm+(n+1)k—2 - Cm+(n+1)k—3 Cm+(n+1)k—3 - Cm+(n+1)k—4 Cm+nk - Cm+nk—]

Cm+nk+1 — Cm+nk

+ o ‘
Cm+nk_ Cm+nk71
Thus if Vm,
lima,, .= —7n,
n—oo

then, by Theorem 2.1, this expression tends to

rmrm~1 '.'rm+1+rm—1rm—2”'rm+1+ e rm+1
N
k factors k — 1 factors 1 factor

Moreover,

. Y 4
lim — Aptnk+1Br =1 msnk+1 = Tms1Br—1.m+1-
n—oco

Thus, if r,,,, # 0, Vm we have

’
Bkv-l,m+1 =1 +rm+2 +rm+2rm+3 +oee +rm+2  Ym—1Tmo
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which shows that, due to the periodicity of the r,,, the conditions Vm, B, _, ., # 0 of Theorem
2.2 are equivalent to the last k conditions (L) of Theorem 2.5.

Thus, the result of Theorem 2.2 holds under the assumptions that 7, - - - r,_; # 0, and that the
last k conditions (L) are satisfied. The condition B, 1 ,,. .+ * 0 insures the existence of the
ratios under consideration and it can be removed since, otherwise, the result stated would have
no meaning.

To end let us mention that since, for (1), we have

C,=by+a,—aa,+ --- +(-1)"""a, - a

and
AC, =

n

_an+1ACn—17

the usual convergence test for series can be used to obtain convergence conditions for the
continued fraction. In particular the d’Alembert’s test says that if 3K <1, IN, V> N,
|a,| <K, then (C,) converges.
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A MATRIX EUCLIDEAN ALGORITHM AND THE MATRIX MINIMAL PADE
APPROXIMATION PROBLEM

Adhemar BULTHEEL and Marc VAN BAREL
K.U. Leuven, Department of Computer Science, Celestijnenlaan 2004, B-3030 Leuven (Heverlee), Belgium

We formulate a minimal Padé approximation problem and generalize it for rectangular matrix series. The
scalar solutions can be computed by the Euclidean algorithm and we give its generalization to compute the
matrix approximants. The algorithm is normalized so that it generates unique matrix minimal Padé approxi-
mants and a unique continued fraction representation for them.

Keywords: Matrix Padé approximation, rational matrices, matrix Euclidean algorithm, block Hankel matrices.

Introduction

The problem of Padé approximation is well known for scalar series F(z). If we allow the series
to be p X m matrix series, it is not trivial to extend the theory. To give an idea of the problems
that may arise, we note the following.

A scalar rational form N(z)M(z) ' can be simply normalized by requiring e.g. that M(z) is
monic. If however N(z) € C?*™[z] and M(z) € C”*™|z], the normalization is not simple. We
have chosen for the simplest possible (in a certain sense) representation of M(z), i.e. for a
canonical form of M(z).

Another problem which arises in the matrix case is the degree of the numerator and
denominator which is needed in the definition of Padé approximant. In the scalar case, there is
only one degree for the numerator and one for the denominator. For the matrix case, one could
consider all possible kinds of degree information since each entry of the numerator and the
denominator matrix is a scalar polynomial with a specific degree. This seems to be too detailed a
specification of the degrees in the general matrix case, although it works for vector approxi-
mants. The other extreme is to consider the numerator and denominator as polynomials with
matrix coefficients. In that case we associated again one degree with the numerator and one
degree with the denominator. This seems to work partially for the square matrix case when we
have a normal Padé table. However, a matrix coefficient can be singular without being zero and
these situations of the nonnormal case ask for more detailed degree information. We shall here
consider row degrees for the matrices. This is something in between the two previous extremes.
Thus we could write N(z) € (C™[z])” rather than N(z) € C?*"[z], but we shall not do so. It is
then a logical consequence to consider the orders of approximation also rowwise.

Our approach will be via the Euclidean algorithm. It is known that, in the scalar case, it can be
used to generate Padé approximants found along an antidiagonal of the Padé table; i.e. with at
least a certain fixed order of approximation and with increasing denominator degree and

© 1990 - Elsevier Science Publishers B.V. (North-Holland)



