

Acetylene Chemistry

Chemistry, Biology, and Material Science

Acetylene Chemistry

Chemistry, Biology and Material Science

Edited by F. Diederich, P.J. Stang, R. R. Tykwinski

WILEY-VCH Verlag GmbH & Co. KGaA

Editors:

Switzerland

USA

Prof. Dr. François Diederich Laboratorium für Organische Chemie ETH Hönggerberg, HCI CH-8093 Zürich

Prof. Dr. Peter J. Stang
Department of Chemistry
University of Utah
315S 1400E, Rm. 2020
84112 Salt Lake City

Prof. Dr. Rik R. Tykwinski Department of Chemistry University of Alberta T6G 2G2 Edmonton Canada All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be

Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data:

inaccurate.

A catalogue record for this book is available from the British Library.

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de>.

© WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005
All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are

Printed in the Federal Republic of Germany. Printed on acid-free paper.

not to be considered unprotected by law.

Typesetting hagedom kommunikation,
Viernheim

Printing betz-druck gmbh, Darmstadt
Bookbinding Litges & Dopf Buchbinderei
GmbH, Heppenheim

ISBN 3-527-30781-8

Acetylene Chemistry

Edited by

F. Diederich, P. J. Stang,

R. R. Tykwinski

Further Reading from Wiley-VCH

A. de Meijere, F. Diederich (Eds.)

Metal-Catalyzed Cross-Coupling Reactions, 2nd Ed., 2 Vols.

2004, ISBN 3-527-30518-1

R. Mahrwald (Ed.)

Modern Aldol Reactions, 2 Vols.

2004, ISBN 3-527-30714-1

N. Krause, A.S.K. Hashmi (Eds.)

Modern Allene Chemistry, 2 Vols.

2004, ISBN 3-527-30671-4

R. Gleiter, H. Hopf (Eds.)

Modern Cyclophane Chemistry

2004, ISBN 3-527-30713-3

Preface

The carbon-carbon triple bond is a common structural motif in organic chemistry. Only during the past two decades, however, has it become a mainstay in the toolbox of synthetic organic chemists, biochemists, and materials scientists. Both as a building block and as a versatile synthon, the fascinating and sometimes unpredictable chemistry associated with the alkyne moiety has fueled many of the most recent advances. A decade ago, the monograph *Modern Acetylene Chemistry* documented an emerging renaissance in the chemistry of the carbon-carbon triple bond. Over the past ten years, this renaissance has evolved at an astounding rate and acetylenes now constitute a principal class of compounds in nearly all areas of chemistry and materials science.

The explosive growth of acetylene chemistry has particularly benefited from the development of new synthetic methodology based on transition metal catalysts and metal acetylides. An acetylene unit can now be introduced into nearly any desired molecule, large or small, often with surprising ease. Metal acetylides are key components for generating new nucleophilic reagents suitable for asymmetric addition reactions into electrophilic multiple bonds. The chemistry of early transition metal acetylides is especially rich, providing a fascinating class of compounds with remarkable synthetic potential. Acetylene chemistry has also driven the development of new methodology such as electrophilic addition reactions that allow the derivatization of this high-energy functional group into hetero- and carbocycles of significant interest to both synthetic and medicinal chemists. Alkynes are also versatile synthetic building blocks for the formation of natural product analogues and hybrid structures. For example, combining the hydrophobic, rigid, and linear attributes of acetylenes with the hydrophilic and chiral framework of carbohydrates affords derivatives with interesting structural properties and biological activity.

The advent of fullerene and nanotube chemistry in the 1990s inspired the search for other molecular carbon allotropes, and the hunt for both linear and cyclic allotropes consisting of sp-hybridized carbon continues in earnest. The study of carbon clusters, both linear and cyclic, spans from astrophysics to fullerene formation and advances in synthetic methodology are propelling efforts on all fronts. Acetylenic carbon rings can now be generated in the gas phase by a number of routes, while acyclic polyynes with lengths of several nanometers can be produced in unprecedented quantities with a range of terminal appendages. Cleverly designed acetylenic scaffolds can also serve as precursors to carbon-rich structures such as fullerenes and bucky onions. These recent discoveries provide for the tantalizing possibility of designer fullerenes with engineered shape and size.

Structural rigidity and electronic communication which is essentially unperturbed by conformational effects are the hallmarks of the acetylene moiety. These attributes make it a highly versatile component for conjugated scaffolds, especially when coupled with the extraordinary advances that have been achieved in metal catalyzed cross-coupling reactions. Nowhere is this more evident than in the spectacular array of molecules that have been assembled based on an arylene ethynylene framework. The synthesis of macrocycles based on arylacetylenes has now evolved to the point where constitution, physical properties, and chemical reactivity can be controlled in exquisite detail. Many of these molecules have been structurally tailored to exhibit specific properties of use in semiconductors, nonlinear optical media, liquid crystals, and sensors. Shape persistent acetylenic macrocycles can provide ordered systems based both on super- and supramolecular chemistry, resulting in tubular superstructures, two-dimensional networks, hosts for molecular recognition, and even adaptable systems that conform to external stimuli. Oligomeric, dendrimeric, and polymeric systems based on arylene ethynylene subunits are now widely viewed as some of the most important semiconducting organic materials. Vital to the successful application of these materials is the development of a much more thorough understanding of the key aspects of their synthesis, electronic structure, and organization into well-ordered films. The fruits of these efforts include synthetic polymers with programmed solid-state organization and ultra-sensitive molecular sensors for TNT. Arylene ethynylene structures incorporating chiral 1,1'-binaphthyl subunits provide yet another appealing dimension to these materials, and optically active acetylenic scaffolds suitable for asymmetric catalysis, nonlinear optics, and polarized emission have all been realized.

Complementing the efforts of synthetic and experimental chemists are the substantial achievements of theoretical chemists in their ability to both model and predict the properties of acetylene-rich molecules. The ever-increasing power of computational hardware, coupled with the development of new and improved numerical methods, have made theoretical modeling a vital tool in the evolution of modern acetylene chemistry. These efforts have shed light on topics ranging from the fundamentals of homoconjugation to the prospect of utilizing acetylene-based molecular wires as components in molecular electronics.

The eleven expert authors that have contributed to this monograph collectively offer a rich overview of the modern face of acetylene chemistry, as well as a detailed analysis of more subtle aspects that can dictate the success or failure of a particular experiment. Considerable emphasis has been placed on outlining the most recent advances in key areas of this discipline. We hope that this monograph offers to the novice a taste of the fundamental issues that motivate this exciting field of science, and to the expert the specific details on synthesis and applications necessary to stimulate the future of acetylene chemistry.

The editors wish to thank Dr. Elke Maase at Wiley-VCH for an enjoyable collaboration in the preparation of this book and Ms. Annie Tykwinski for designing the cover art.

Symbols and Abbreviations

A adenine

ABLA absolute bond length alternation parameter

Ac acetyl

ADF Amsterdam density functional
AFM atomic force microscopy
AIBN azobis(isobutyronitrile)
AIM atoms in molecules

All allyl

AM1 Austin model 1

APCI atmospheric pressure chemical ionization

ARCS aromatic ring current shielding ASE aromatic stabilization energy

ATRP atom transfer radical polymerization

B3LYP hybrid funtional by Becke and Lee-Yang-Parr B3PW91 hybrid functional by Becke and Perdew-Wang

BHT 3,5-di-*tert*-butyl-4-hydroxytoluene
BINOL 1,1'-binaphthalene-2,2'-diol
BLYP Bekce/Lee-Yang-Parr functional
bmim 1-butyl-3-methylimidazolium

Bn benzyl

Boc *tert*-butoxycarbonyl
BPO benzoyl peroxide
bpy 2,2'-bipyridyl

BRE Breslow resonance energy

 $\begin{array}{lll} \text{BTEACl} & \text{benzyltriethylammonium chloride} \\ \text{BTEAICl}_2 & \text{benzyltriethylammonium dichloroiodate} \\ \text{BTEAICl}_3 & \text{benzyltrimethylammonium tribromide} \end{array}$

BTMSA bis(trimethylsilyl)acetylene

BTMABr₃ benzyltrimethylammonium tribromide

Bu butyl

BuLi butyllithium Bz benzoyl CAN ceric ammonium nitrate

CASSCF complete active-space self consistent field

CC coupled cluster

CCSDT/ CCSD(T) coupled cluster singles doubles triples

CD circular dichroism

CNDO/S-CI complete neglect differential orbital/singles configura-

tion interaction

COD 1,5-cyclooctadiene Cp cyclopentadienyl

Cp' differently substituted cyclopentadienyl

Cp* pentamethylcyclopentadienyl **CPDMS** 3-cyanopropyldimethylsilyl CRD cavity ring-down (spectroscopy)

CSA camphorsulfonic acid

 $\langle d \rangle$ average diameter

DABCO 1,4-diazabicyclo[2.2.2]octane

dba dibenzylideneacetone

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCC dicyclohexylcarbodiimide DCE 1.2-dichloroethane DE dissociation energy DEAD diethyl azodicarboxylate

Dec decyl

DET diethyl tartrate

DFT density functional theory

"D+G" band "disorder-induced" + "graphite" band

DIB diffuse interstellar band DIBAH diisobutylaluminium hydride DIC N, N'-diisopropylcarbodiimide

DL diode laser

DLS dynamic light scattering **DMAP** 4-dimethylaminopyridine **DME** 1,2-dimethoxyethane DMF N, N-dimethylformamide 1,3-dimethyl-2-imidazolidinone DMI

DMSO dimethylsulfoxide

Dod dodecyl

DOKE differential optical Kerr effect DOPS-TIPS SiMe₂CMe₂CH₂CH₂OSi(CHMe₂)₃

DP degree of polymerization

dppe 1,2-bis(diphenylphosphino)ethane dppp 1,3-bis(diphenylphosphino)propane DSC differential scanning calorimetry

EA electron affinity

ethylene-bis-tetrahydroindenyl ebthi

ED electron diffraction

energy dispersed X-ray emission EDX

enantiomeric excess ee

electron energy loss spectroscopy **EELS** electronegativity equalization method **EEM**

ELF electron localization function E_{max} energy of maximum absorption

ΕP ethynylphenylene

EPR electron paramagnetic resonance

equivalents equiv electrostatic unit esu

Et ethyl

Fritsch-Buttenberg-Wiechell **FBW** FC flash chromatography

fs femtosecond

fur furyl

FVP flash vacuum pyrolysis **FWHM** full width at half maximum

molecular second hyperpolarizability Y

Gal galactose

GGA gradient generalized affroximation

Glc glucose

GPC gel permeation chromatography

hv light Hep heptyl hexyl Hex

HF Hartree-Fock

hexamethylphosphoramide **HMPA**

HOMO highest occupied molecular orbital highly oriented pyrolytic graphite HOPG

ICR ion cyclotron resonance

intermediate neglect differential orbital INDO

ΙP ionization potential

association constant K_{assoc}

l contour length

wavelength of maximum absorption λ_{max}

Langmuir-Blodgett LB

XVI Symbols and Abbreviations

LC liquid crystal

LDA lithium diisopropylamide LD-TOF laser desorption time of flight

LE locally excited
LLS laser light scattering

LiHMDS lithium hexamethyldisilazide

LUMO lowest unoccupied molecular orbital

MALDI-TOF matrix-assisted laser desorption/ionization time-of-flight

Me methyl

MINDO modified intermediate neglect differntial orbital

min minutes

MMC molecular mechanics for clusters

MM3 molecular mechanics 3

M_n number average molecular weight

MNDO/3 modified neglect differential orbital number 3

MOM methoxymethyl

MP2, MP4 Moller Plesset 2, Moller Plesset 4

MRD-CI multi-reference single and doubly excitation configuration

MRTD molecular resonant tunneling diode

Ms mesyl

M_w weight average molecular weight

NBO natural bond order
NBS N-bromosuccinimide
NCS N-chlorosuccinimide

NDR negative differential resistance
NICS nucleus independant chemical shift

NIS N-iodosuccinimide
NLO nonlinear optics
NLP nonlinearity parameter
NME N-methylephedrine

NMO N-methylmorpholine N-oxide NMP N-methyl-2-pyrrolidone

ns nanosecond

Oct octyl

ODCB ortho-dichlorobenzene
ODf difluoromethanesulfonate
OEP oligoethynylphenylene

OITB orbital interaction through bonds
OITS orbital interaction through space
ORTEP Oak Ridge thermal ellipsoid plot

OTf trifluoromethanesulfonate

PArE poly(arylene ethynylene) **PAM** phenylacetylene macrocycle PCC pyridinium chlorochromate PDI polydispersity index

PDM phenyldiacetylene macrocycle parametric method number 3 PM₃

PDA poly(diacetylene)

Ph phenyl PhLi phenyllithium PHT phenylheptatriyne

Pic picrate

Piv pivaloyl (tert-butylcarbonyl) PmB para-methoxybenzyl

PPE poly(phenylene ethynylene) PPV poly(phenylene vinylene)

Pr propyl PS polystyrene PTA poly(triacetylene) PTFE polytetrafluoroethylene

phenyltetraacetylene macrocycle PTeM. PTrM phenyltriacetylene macrocycle

pyridine ру

QUINAP 1-(2-diphenylphosphanyl-naphthalen-1-yl)-isoguinoline

R2CPD resonance two-color photodetachment

REMPED resonance-enhanced multi-photon detachment

RHF restricted Hartree-Fock rt room temperature

SAM self-assembled monolayer SCF self consistent field

SERS surface plasmon polariton-enhanced Raman spectra

SHG second harmonic generation

SSH Su-Schrieffer-Heeger

STM scanning tunneling microscopy

STO-3G minimal Pole basis set

T thymine

TBAF tetrabutylammonium fluoride

TBDMS tert-butyldimethylsilyl **TBS** tert-butyldimethylsilyl

TCNQ 7,7,8,8-tetracyanoquinodimethane

TD Time dependent **TDDFT** time-dependent DFT

XVIII Symbols and Abbreviations

TEBAC triethylbenzylammonium chloride

TEE tetraethynyl-ethylene

TEM transmission electron microscopy

Tf trifluoromethanesulfonyl
TFA 2,2,2-trifluoroacetic acid
TGA thermal gravimetric analysis
Th Thexyl, 1,1,2-trimethylpropyl

THF tetrahydrofuran
THP tetrahydropyranyl
TIPS triisopropylsilyl

TIPSA triisopropylsilylacetylene TLC thin layer chromatography

TMEDA N,N,N',N'-tetramethylethylenediamine

TMS trimethylsilyl

TMSA trimethylsilylacetylene
TMU tetramethylurea
TNT trinitrotoluene

TOF-MS time-of-flight mass spectrometry

Tol4-tolyl (4-methylphenyl)Tsp-toluenesulfonylTrtrityl (triphenylmethyl)

U uracil

UPS ultraviolet photoelectron spectroscopy

VEH/SOS valence effective Hamiltonien/sum over states

VSEPR valence shell electron pair repulsion

VPO vapor pressure osmometry

VUV vacuum UV

ZINDO Zerner intermediate neglect differential overlap

List of Contributors

Patrick Aschwanden

Laboratorium für Organische Chemie ETH Zürich 8093 Zürich Switzerland

Bruno Bernet

Laboratorium für Organische Chemie ETH Zürich 8093 Zürich Switzerland

Erick M. Carreira

Laboratory of Organic Chemistry ETH Hoenggerberg, HCI 8093 Zürich Switzerland

Rémi Chauvin

CNRS

Laboraoire de Chimie de Coordination 205 Route Narbonne 31077 Toulouse, Cedex 4 France

Sara Eisler

Department of Chemistry University of Alberta Edmonton, Alberta T6G 2G2 Canada

Michael M. Haley

Department of Chemistry 1253 University of Oregon Eugene, Oregon 97403-1253 USA

Carissa S. Jones

Department of Chemistry and the Materials Science Institute 1253 University of Oregon Eugene, Oregon 97403-1253 USA

Sigurd Höger

Polymer Institut Universität Karlsruhe Hertzstraße 16 76187 Karlsruhe Germany

Richard C. Larock

Department of Chemistry 1605 Gilman Hall Iowa State University Ames, IA 50011-3111 USA

Christine Lepetit

CNRS

Laboraoire de Chimie de Coordination 205 Route Narbonne 31077 Toulouse, Cedex 4 France

Matthew J. O'Connor

Department of Chemistry and the Materials Science Institut 1253 University of Oregon Eugene, Oregon 97403-1253 USA

Lin Pu

Department of Chemistry Universtiy of Virginia PO Box 400319 Charlottesville, VA 22904-4319 USA

Uwe Rosenthal

Institut für Organische Katalyseforschung Universität Rostock e.V. Buchbinderstraße 5-6 18055 Rostock Germany

Timothy M. Swager

Department of Chemistry Massachusetts Institute of Technolgoy 77 Massachusetts Ave. Cambridge, MA 02139 USA

Yoshito Tobe

Department of Chemistry Faculty of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan

Rik R. Tykwinski

Department of Chemistry University of Alberta Edmonton, Alberta T6G 2G2 Canada

Andrea Vasella

Laboratory of Organic Chemistry ETH Hoenggerberg, HCI 8093 Zürich Switzerland

Tomonari Wakabayashi

Department of Chemistry, School of Science and Engineering Kinki University Higashi-Osaka 557-8502 Japan

Contents

1	Theoretical Studies on Acetylenic Scaffolds 1
1.1	Introduction 1
1.2	Linear Acetylenic Scaffolds 2
1.2.1	The Dicarbon Molecule and Acetylene 2
1.2.2	Uncapped Pure sp Carbon Chains 3
1.2.3	Capped All-sp Oligoacetylenic Chains 5
1.2.4	Hybrid <i>sp-sp</i> ² Oligoacetylenic Molecules 9
1.2.5	Hybrid sp-sp ³ Oligoacetylenic Molecules 14
1.3	Cyclic Acetylenic Scaffolds 15
1.3.1	Hybrid sp-sp ³ Rings 15
1.3.2	Hybrid sp-sp ² Rings (Dehydroannulenes) 20
1.3.3	carbo-Heteroannulenes 32
1.4	Star-Shaped Acetylenic Scaffolds 34
1.4.1	Atomic Cores 34
1.4.2	Rod Cores 34
1.4.3	Cyclic Cores 37
1.5	Cage Acetylenic Scaffolds 40
1.6	Conclusion 41
	Acknowledgements 42
2	Synthesis of Heterocycles and Carbocycles by
	Electrophilic Cyclization of Alkynes 51
2.1	Introduction 51
2.2	Cyclization of Oxygen Compounds 51
2.2.1	Cyclization of Acetylenic Alcohols 51
2.2.2	Cyclization of Acetylenic Phenols 55
2.2.3	Cyclization of Acetylenic Ethers 57
2.2.4	Cyclization of Acetylenic Acids and Derivatives 59
2.2.5	Cyclization of Acetylenic Aldehydes and Ketones 63
2.3	Cyclization of Sulfur and Selenium Compounds 66
2.4	Cyclization of Nitrogen Compounds 67
2.4.1	Cyclization of Acetylenic Amines 67
2.4.2	Cyclization of Acetylenic Amides 70

VIII	Content

2.4.3	Cyclization of Acetylenic Carbamates 73
2.4.4	Cyclization of Acetylenic Sulfonamides 75
2.4.5	Cyclization of Acetylenic Enamines and Imines 77
2.4.6	Cyclization of Other Acetylenic Nitrogen Functional Groups 79
2.5	Cyclization of Carbon onto Acetylenes 81
2.5.1	Cyclization of Acetylenic Carbonyl Compounds and Derivatives 81
2.5.2	Cyclization of Diacetylenes 83
2.5.3	Cyclization of Aryl Acetylenes 84
2.5.4	Cyclization of Acetylenic Organometallics 89
2.6	Conclusions 90
2.7	Representative Experimental Procedures 90
2.7.1	Synthesis of α-Methylene-γ-butyrolactones by Carbonylation of
	1-Alkyn-4-ols 90
2.7.2	Synthesis of 1-Alkoxyisochromenes by Cyclization of
	2-(1-Alkynyl)benzaldehydes 90
2.7.3	Synthesis of 3-Aryl(vinylic)indoles by Palladium-catalyzed
	Cross-coupling of Aryl Halides or Vinylic Triflates and
	2-(1-Alkynyl)trifluoroacetanilides 90
2.7.4	Synthesis of Pyridines by the Gold-catalyzed Cross-coupling of
	Ketones and Propargyl Amine 91
2.7.5	Synthesis of 4-Iodoisoquinolines by the Cyclization of Iminoalkynes 91
2.7.6	Synthesis of Cyclic Amines by Acetylene-Iminium Ion Cyclizations 91
	Acknowledgements 92
3	Addition of Terminal Acetylides to CO and CN Electrophiles 101
3.1	Introduction 101
3.2	Background 103
3.3	Additions with Stoichiometric Amounts of Metal Acetylides 106
3.4	Nucleophilic CO Additions involving the Use of Zn(11) Salts 114
3.5	Acetylene Additions to CN Electrophiles 125
3.6	Conclusion 131
3.7	Experimental Procedures 131
3.7.1	General Procedure for the Enantioselective Alkynylation of Aldehydes by
	the Use of Stoichiometric Amounts of Zn(OTf) ₂ 131
3.7.2	General Procedure for the Zn(OTf) ₂ -Catalyzed Enantioselective Alkynylation
	of Aldehydes 132
3.7.3	General Procedure for the Enantioselective Alkynylation of
	Ketones Catalyzed by Zn(salen) Complexes 132
3.7.4	General Procedure for the Zn(OTf) ₂ -Catalyzed Diastereoselective
	Alkynylation of N-Glycosyl Nitrones 133
3.7.5	General Procedure for the Et ₂ Zn-Catalyzed Diastereoselective
	Alkynylation of Chiral Nitrones 133
3.7.6	General Procedure for the CuBr-Catalyzed Enantioselective Preparation
	of Propargylamines 133
3.7.7	General Procedure for the [IrCl(COD)] ₂ -Catalyzed Alkynylation of Imines 134