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Identification: Asymptotic Theory

Identification concerns the problem of determining
mathematical models from observed data. From a con-
ceptual point of view, an identification method is a
mapping from the space of observed input/output data
to a space of models. Identification theory concerns the
analysis of such mappings. In this article we shall present
an analysis of common identification methods. The
analysis will be confined to asymptotic properties; that
is, we shall only study what happens as the number of
observed data approaches infinity.

1. Identification Methods

Here, we adopt the same notation and framework as
detailed elsewhere in the Encyclopedia (see Identifi-
cation: Time-Domain Methods). We thus consider a set
of models

M={M0)0eD,} (8]

consisting of individual models that are characterized as
predictors:

MO):5(]10)=g0;1,27") 2
Here
=y, u(l),...,y(),u()] 3)

denotes the sequence of inputs (#) and outputs (y) up to
time ¢. The prediction error at time ¢ is denoted by

e(1,0)=y(1) —y(z]0) 4)

An identification method .# is now a mapping from z"
to A:

S8 u(0y) 5)

or, if we prefer to work directly with the parameters, a
mapping from z¥ to D,:

N0y (6)

Two basic principles to determine such mappings are
discussed elsewhere (see Identification: Time-Domain
Methods):

by = arg lr)nin Vy(0,zY) (7a)
l N
Vy(0,zY) == S 11,0, (2, 0)] (7b)
and =
Oy= arg £(0,z%) =0 (8a)
] N
Su(0,2Y) = = Y L(1, 0)e(t, 0) (8b)

=1

In the criterion minimization approach (7), / is a scalar-
valued “norm” that measures the “size” of the predic-
tion error. In the correlation approach (8), {{(7)} is a
sequence of vectors, formed from past data, and possibly
also dependent on 0:

{)y=L(tz"",0) ®)

Further details and examples of identification are given
elsewhere (see Identification: Time-Domain Methods).

2. Asymptotic Analysis

We now ask the question: what are the properties of the
mapping (5), which is implicitly defined by (7) or (8)?
There are two ways to approach this question.

(a) Generate data z" with known characteristics. Apply
the mapping (5) (corresponding to a particular
identification method) and evaluate the properties
of #(6,). Such methods are known as simulation
studies.

(b) Assume certain properties of z¥ and try to calculate
what the inherited properties of .#(0y) are. This is
known as analysis.

The mapping (5) is in general fairly complicated and
nonlinear. Moreover, the data z* are often considered to
be a realization of a stochastic process. This means that
although the mapping (5) itself is deterministic the
analysis has to be performed in a probabilistic frame-
work. The parameter 0, will be a random variable with
a distribution that is inherited from the probabilistic
properties of z¥ in a nontrivial manner. All this implies
that in general we can describe only the asymptotic
properties of Oy as N tends to infinity. The typical
asymptotic aspects are to establish to what f converges
as N — oo and what the asymptotic distribution of 0 is.

There are several reasons why such results are of
interest. We need them in order to make rational deci-
sions about experiment design and model validation, as
well as about the choices of / and { in the identification
methods.

Here, we shall discuss such asymptotic, analytic re-
sults. The analysis is a fairly technical problem, and we
cannot provide the theory itself here. Instead, we shall
quote the basic results of the analysis, and comment
upon the implications for various user choices.

The fact that the analysis only deals with asymptotic
results implies certain limitations. With asymptotic
results we know the properties of 0, for “large” N.
However, the theory usually does not provide any
information about how large N has to be for the results
to be applicable. It may be N =100 or N ~ 10°, which
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Identification: Asymptotic Theory

obviously makes a big difference to the user. Therefore,
to get some insight into the properties of , for realistic
values of N, the analysis must be complemented with
simulation studies.

3. The Concept of Identifiability

The term identifiability is often used to express certain
properties related to the identification problem. Many
different definitions have been given for this concept,
and these have been surveyed by Nguyen and Wood
(1982). Without going into details about the different
possibilities, we may single out the following basic
approaches.

(a) Identifiability as parameter consistency. There is one
parameter 0,e D, that corresponds to the “true system,”
usually expressed as

{e(1, 0,)} is a sequence of
independent random variables (10)

The parametrization (1) is then said to be identifiable
under the chosen identification method and for the
particular data set if

0y—0, with probability 1 as N—ooo (1)

(b) Identifiability as parameter uniqueness. 1dentifiability
is defined as the situation where the estimate , con-
verges to a unique value 0* as N —oo, and we are not
concerned with the question of whether 6* is a “true”
value. This situation is at hand when the parametrization
(1) and the data set z are such that no two different

values of 0 e D, (except perhaps on a null space) give the
same predictions.

(¢) Identifiability as system consistency. Identifiability is
defined as the situation where .ll(éN) converges to a true
description of the system, regardless of whether 6 itself
converges to a unique value.

4. Convergence Properties

In Eqns. (7) and (8) the criterion function Vy(0, z¥) and
the function fy(0,z¥) are defined as sums of random
variables [[t, 0, £(z, 6)] and (1, 0)( " (1, 0), respectively. If
these variables were stationary sequences of independent
random variables, an elementary law of large numbers
would tell us that the sums in question would converge
to their expected values. Now, the variables clearly are
dependent, but under weak conditions the dependence
will decay fairly rapidly with the time difference (i.e., the
prediction error now is almost independent of what
happened a long time ago). Conditions of this character
are known in statistics as “‘mixing conditions.” Under
such suitable conditions, the law of large numbers will
still apply:

Vy(6,z") >V (0)
uniformly in 6 with probability 1 as

N->wx (12)
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160, 2") = 1(0)
uniformly in @ with probability 1 as
N—- (13)

Here
V(0)=EI[t,0,e(t,0)], f(0)=E((t,0)e(1,0) (14)

where the notation E is defined as

N—-w

N
Eh(t) = lim %ZEh(l) (15)
1

with an implied assumption that the limit exists. See, for
example, Ljung (1978) for technical details.

With (12) it follows that the value §, that minimizes
Vy(0,z") will converge with probability 1 to 6*, the
value that minimizes ¥ (9). If the minimum is not unique
we obtain convergence into a set:

0y— D., with probability 1 as N—o  (16)
D.={0] 17(6)=m0in v(0)}

Similarly, the solution 6 to fy(#,z")=0 will, under
(13), converge with probability 1 to the solution 6* of
f(0)=0.

These results are very natural, but also quite general.
Notice, for example, that (12) and (13) will hold even
without a specific assumption about how the true data
are generated. We need thus not assume that the true
system belongs to the model set for the quoted con-
vergence results to hold.

5. Asymptotic Distribution

We shall now investigate in what manner the estimate 0,
approaches the limit 0 *. Let us first consider the case (8).
We have, by Taylor’s expansion,

0=fy(Oy.z")
=/ (0%, 2%) + [y (&, 2¥) Oy — 0%) )

Here f7 is the gradient of f with respect to € and ¢, is
a value in a |0, — 0*| neighborhood of 8*. Now,

INSu(0%, %) =ﬁ§cu,0*)s(z,o*) (18)

is a normalized sum of random variables with zero mean
values (recall that f(6*)=E({(t,0*)e(t,0*)=0 by
definition). Under suitable, and weak, conditions the
central limit theorem will be applicable to Eqn. (18) (see,
for example, Ljung and Caines (1979) for some technical

details). Then
VNfu(0%,2%)eAsN(0, Q) (19)
where

0 = lim EN -fy(0*,z")f5(0*%,2z") (20)

(Equation (19) means that the random variable \/N 'fy
converges in distribution to the normal distribution with
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zero mean and covariance matrix Q.) Under similar
conditions as in (13) the matrix f7(0, z") will converge
uniformly in 6 with probability 1 to some limit H () as
N - 0. Hence

fuy,2V) > H*
with probability 1 as
N—- (21)
where

H*=E{(1,0%)yT(1,0%)

~d
+E@C(1,B)Ia=m6(t.0*) (22)
Here

d
:1:(1,0)=— 6(1 0)— y(tIG)

(a dlm 0 x dim y matrix) (23)
Equations (17), (19) and (21) now imply that
JN@,—0*)eAsN(0, P) (24)
where
P =[H*]"'Q[H*]" (25)

provided, of course, that H* in (21) is invertible.

In the special case where 0* = 0, is such that {(z, 6,)}
is a sequence of independent random vectors with zero
mean values and covariance matrices A,, Eqns. (20) and
(22) simplify to

Q =E{(1,00)4,L7(1, 6y)
H*=E{(t,00)y (1, 6,) (26)

Consider now the criterion minimization approach (7)
with

I(t,0,e)=1eTAg'e 27
The minimizing value f can also be determined as
Oy = arg — d Vy(@;z¥)=0
i OeD, 4d0 NS =
where
3 V(0 z”)=l i e(t,0)A; "W (1,0) (28)
do M NgZ T ’

We can therefore apply the previous results with
{(t,0,) =Y (1,6,) A5 "; so then we obtain that (24) holds
with

=[Ey(1,0)Ag " YT (1,00)] " (29)

This result has a natural interpretation. We see that the
asymptotic accuracy of a certain parameter is related to
how sensitive the prediction y(z|6) is with respect to this
parameter. Clearly, the more a parameter affects the
prediction, the easier it will be to determine its value.

There is another interesting implication of Eqn. (29).

Let
V()= Ee"(t,0)A,'e(t,0) (30)

Then we can evaluate how good the model MOy is by
calculating the value ¥(f,). Here @, is a random vari-
able, and we may evaluate the expectation of ¥ (f) with
respect to 0. This gives, after some straightforward
calculations,

dim 0

EV(0y)~EV(0,)+ @31
using Eqn. (29) and an assumption that {&(z, 6,)} is a
white noise sequence, thus assuming the model set is
large enough to include a correct description of the true
system. Here *“ ~* means asymptotically equal to.

The result (31), which was first derived by Akaike
(1973) is remarkable in its generality. It tells us that the
expected prediction error variance increases with the
number of independent parameters in the model (once
the model set is large enough to contain a true value 6,)
irrespective of where the parameters enter the model.
Notice, though, that the derivation assumes the matrix
in Eqn. (29) to be invertible. It is therefore only the
number of “‘independent™ parameters that enters the
Eqgn. (31).

6. The Cramér-Rao Bound

There is a well-known theoretical lower bound for the
achievable accuracy of an estimate. This is the
Cramér—Rao bound:

E(0y — 0,)(0y — 6,)"
[60 log L(0, z”):l [60 logL((),z”)] (32)

for any unbiased estimate éw- Here L(6,z") is the
likelihood function for the estimation problem in ques-
tion. If we apply this result to an identification problem,
where the true prediction errors {¢(z,0)} form a se-
quence of independent, Gaussian random variables with
covariance matrices A, it is fairly straight-forward to
show that the right-hand side of (32) equals P as given
by Eqgn. (29). The covariance matrix of the asymptotic
distribution is thus given by the Cramér-Rao lower
bound in this case. The estimator (7) is then said to be
asymptotically efficient. See, for example, Goodwin and
Payne (1977) for a further discussion.

7. A Discussion of the Asymptotic Results

The result (16) can be formulated in the following more
suggestive way:

The estimate converges to the best possible predictor, that
is, the best possible approximation of the system, in the
model set # (in the sense of the chosen criterion).
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When the system has no input signal {u(¢)} (i.e., when
the properties of a time series, or signal, {y(¢)} are
modelled), this is a very strong robustness result. It
means that we obtain a very meaningful approximate
description of the signal.

For a system with an input, the algorithm still makes
the best possible out of the situation: when the system
is more complex than the model set, it chooses the best
approximation available within the model set. This may
have some surprising effects on the parameter estimates
of the model, which we illustrate in the following simple
example.

ExAMPLE 1. Suppose that the system is given by
y(t)+ay(t —1)
=bou(t —1)+e(t)+cpe(t —1) (33)

where {u(r)} and {e(r)} are independent sequences of
independent random variables with zero mean values
and unit variances. Let the model set be given by

y(|0) = —ay(t — 1) +bu(t —1) (G4

It is easy to verify that the values of a and b that give
the best predictions when applied to Eqn. (33) are

a*=a,—cylry, b*=b, (35)
where
ro+ ¢o(co — ay) — agcy + 1

1 —al

’0=E)’2(1)=

These values give a prediction error variance
V(n* h* 2 cl%
Via*,b*)=1+c¢j—— (36)
To
This variance is smaller than the “true values” a, and b,
inserted into Eqn. (36) would give:

V(ag, by) =1+ ¢} 37)

For example, with by=a;,=0 and ¢,=0.9, we have
V(a*, b*)=1.36 and ¥ (ay, b,) = 1.81.

When we apply the prediction error method (7) to
Eqns. (33) and (34) the estimates @(N) and A(N) will,
according to the general convergence result, converge to
the values given by Eqn. (35). The fact that a* # q, is
usually expressed by saying that the estimate is ‘‘biased.”
However, it is clear from Eqns. (36) and (37) that the
bias is beneficial for the prediction performance of the
model (35). It gives a strictly better predictor for @ = G*
than for 4 = q,.

The example stresses that the algorithm indeed gives
us the best possible predictor, and it uses its parameters
as vehicles for that. It is, however, important to keep in
mind that what is the best approximate description of a
system in general depends on the input used.

The ideal situation is of course where the “best
possible predictor” is precisely identical to the “‘true
predictor” so that we have obtained a true system
description. There are essentially two conditions associ-
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ated with this. One is that the model set .# should be
large enough so that the system & actually belongs to
it. The other is that the experimental condition Z (the
input) should be general enough, so that no other model
is equivalent to the system under 2. This latter condition
is illustrated in the following simple example.

ExaMPLE 2. Suppose that the system is given by
y()+a’y(t —1)
=bu(t —1)+bJu(t —2)+e(t) (38)
and that the input is
u()y=1 39)
Let the model set be given by
y(|0)=—ay(t — 1)+ byu(t —1)
+ bu(t —2)+e(t) (40)

This set is “large énough” to include the true system
(38). However, under the input (39) all models .#(6)
such that

b+ b,=b)+ b (41)

will give an exact description of the system. All these
models will therefore give the best possible predictors,
and convergence to the true values b, =5}, b,=b)
cannot be guaranteed. The experimental condition (39)
is not “general enough.”

8. Properties of Estimates Determined by
Numerical Methods

So far we have discussed the properties of the estimates
(7) and (8). In practice the estimates will in most cases
have to be determined by numerical search methods that
do not necessarily yield the theoretical values defined by
Eqns. (7) and (8). The most important aspect, from this
point of view, is that the minimization approach (7) will
provide estimates that are known only to correspond to
local minima of Eqn. (7b). It is therefore an important
problem for analysis to establish whether there exist
nonglobal, local minima of the chosen criterion func-
tion. This is in general a difficult problem, depending on
the model parametrization, the choice of / and the
properties of the data (the system). Clearly for a qua-
dratic criterion (27) and a linearly parametrized model
set,

P(t]0)=0"¢(1,z") (42)

the criterion function is well behaved. For other choices,
only partial results are known. See Astrém and
Soderstrom (1974) and Soderstrom (1975) for some
further aspects.

9. User Choices

To determine a good identification procedure for a given
situation means that the user has to make a number of



Identification: Basic Problem

choices. He or she has to select experimental conditions
(which signals to measure, which inputs to use, sampling
rates, etc.), the set of models, and the functions /in Eqn.
(7) or { in Eqn. (8). The asymptotic results quoted here,
like the set D., into which the estimates converge (see
(16)) and the asymptotic covariance matrix P (see (24)
and (25)), are indeed functions of these listed design
variables. Rational decisions of the design variables can
thus be based on analysis of D, and P. This analysis may
be complex, but certain conclusions can be drawn from
general considerations as follows.

(a) The experimental conditions should be such that the
predictions become sensitive with respect to inter-
esting parameters (see Eqn. (29)).

(b) The model set should be parsimonious (use few
parameters) when describing the system according
to Eqn. (31).

(c) The choice of / should be matched to the proba-
bilistic properties of the prediction errors (optimal
choice /(¢) = —log f(x), where f(x) is the proba-
bility density function of &(z, 6,)).

(d) Since the best approximation of the system for the
experimental conditions at hand is obtained asymp-
totically, the chosen conditions should resemble
those for which the model is to be used.

A detailed discussion of identification theory and user
choices is given in Ljung (1986).

10. Conclusions

Asymptotic identification theory concerns the analysis of
asymptotic, statistical properties of models obtained by
different identification methods. The key technical tools
are (perhaps nonstandard versions of) the law of large
numbers and the central limit theorem. Some fairly
general results can be derived for the basic identification
methods (7) and (8), and such results can form a basis
for rational choices of design variables.

See also: ldentification: Practical Aspects; Validation
of Identified Models; Identification: Frequency-Domain
Methods
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L. Ljung

Identification: Basic Problem

' System identification is concerned with the problem of

building mathematical models of dynamical systems
based on input—output measurements. In this article we
discuss typical aspects of this problem, and outline basic
procedures to handle it. At the same time, this article
aims at tying together the different articles in this Encyc-
lopedia that deal with various aspects of the system
identification problem. The reader is referred to cross
references at the end of this article.

1. Systems and Models

The notion of systems plays an important role in modern
science; many problems in various fields are solved in
a systems-oriented framework. Subjects like control
theory, communications theory and operations research
tell us how to determine suitable regulators, filters,
decision rules, etc. Such theory assumes that a model is
available of the system in question. The applicability of
the theory is thus critically dependent on the availability
of good models.

How does one construct good models of a given
system? This question about the interface between the
real world and the world of mathematics is crucial. The
general answer is that we have to study the system
experimentally and make some inference from the
observations. In practice there are two main routes.
One is to split up the system, figuratively speaking, into
subsystems, whose properties are well understood from
previous experience. This basically means that we rely
upon “laws of Nature” and other well-established
relationships that have their roots in earlier empirical
work. These subsystems are then joined together math-
ematically and a model of the whole system is obtained.
This route is known as modelling (see Dynamic-Systems
Modelling: Basic Principles and Lumped-Parameter Sys-
tems; Dynamic-Systems Modelling: Distributed-Para-
meter Models and Discretization), and does not necess-
arily involve any experimentation on the actual system.
When a model is required of a yet unconstructed system
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(such as a projected aircraft) this is the only possible
approach.

The other route is based on experimentation. Input
and output signals from the system are recorded and
are then subjected to data analysis in order to infer a
model of the system. This route is known as identi-
fication. 1t is often advantageous to try to combine the
approaches of modelling and identification in order to
maximize the information obtained from identification
experiments and to make the data analysis as sensible
as possible.

2. Models of Dynamical Systems

Many different types of models of dynamical systems
have been developed for various purposes. A brief list
of some of the common ones is given below.

2.1 Intuitive or Mental Models

In many cases a model of a system is never formalized.
The user works with an intuitive or mental picture of
how the system operates, and uses this to solve design
problems associated with the system. Such a. mental
model can be verbalized in a number of different ways,
for example, time scales for dominating time constants
or frequency ranges for certain resonances, etc.

2.2 Graphic Models

A linear system is fully characterized by its impulse
response or by its step response. Plots or tables of this
function will thus constitute a model of the system. Such
a model can be used, for example, in tuning a PID
regulator. An equivalent and more common choice is
to describe the frequency-response function G(iw) as a
function of w. This function is the Fourier transform of
the impulse response and is equal to the transfer func-
tion G(s) evaluated on the imaginary axis. The argument
of the complex number G(iw) describes the phase shift
between an input sinusoid of frequency w and the
corresponding output sinusoid, while its absolute value
is the output-to-input sinusoid amplitude ratio.

A plot of the frequency-response function, such as
the Nyquist or Bode diagram, is a very common model
of a linear dynamical system. Several control design
techniques have been specifically tailored to such
models.

2.3 Analytical Models

For many purposes it is more advantageous to work
with analytical, mathematical models, where the
relationships between input signals u(f) and output sig-
nals y(r) are described by mathematical expressions.
Most often, these are basically differential equations,
ordinary or partial, simply because most physical pheno-
mena are usually described in that way. A linear model
is then

YOO +ay" V() + ay" 2 () + - - +a,y(1)
=bu" V(@) +---+bu() (1)
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where (k) as superscript denotes differentiation k times.
It is also common to work with models in discrete
time. The counterpart of (1) then is

y(t) +ay(te—y) + - +a,y(t-,)
=bu(t—y) +---+bult,-,) (2)
Here the ¢, are the sampling instants. Formulas for how
to transform from (1) to (2) when the input is constant
between the sampling instants are given, for example,
in Kwakernaak and Sivan (1972).
Often the effects of random disturbances on the sys-

tem and on the measurements are included in the model.
A typical example is a stochastic, state-space model

x(tsy) = Fx(ty) + Gu(t,) + w(t,) 3)
y(ty) = Hx(t,) + e(t,)

where w and e are white-noise sequences with certain
specified covariance properties.

Analytical models are most often given in the time
domain, but this is not an inherent feature. We could
have a frequency-domain, analytical model like

iy < 210@) ™+ bs(0) 4+ b,
(i) = ()" +a,(iw)" " +---+a,

Q)

which is equivalent to (1).

A complete list of possible analytical models would
be too long to compile here. It may be useful, though,
to list a number of adjectives that are often used to
characterize models.

Static/dynamic. A static model is one where the inputs
and outputs are related by algebraic (“instantaneous”)
expressions. A dynamic model relates these quantities
by difference and/or differential equations, which will
make the current input affect future outputs also.

Discrete-time/continuous-time. In a discrete-time (or
sampled-data) model the relationship between the input
and output is expressed in terms of the sampled
sequences u(r) and y(r) for t=1,2, ..., while a con-
tinuous-time model uses the time-continuous input and
output functions. Notice that this issue as such has
nothing to do with how the data is collected. We could
very well adjust a continuous-time model to discrete-
time measured data.

Linear/nonlinear. If the mapping from input to output
is linear (or affine), the model is called linear, otherwise
it is nonlinear.

Deterministic/stochastic. In a deterministic model the
output can be exactly calculated, given the input. If the
model also contains random elements, like processes
that make the exact calculations of y(¢) impossible given
the input ', then it is called stochastic.

Input—output form/state-space form. If the model con-
tains no auxiliary variables (except stochastic dis-
turbances) in addition to the inputs and the outputs, it
is called an input-output model. If it is written as a
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system of first-order difference or differential equations,
we talk about state-space forms.

Lumped|/distributed parameter. A model that is based
on a finite number of ordinary differential or difference
equations is called lumped. If it uses partial differential
equations or an infinite number of difference or dif-
ferential equations, we call it a distributed parameter
model.

Time-invariant/time-varying. A model whose prop-
erties do not depend on time is time-invariant, otherwise
it is time-varying.

The issue of how to deal with the multitude of dif-
ferent models is further discussed in Identification:
Time-Domain Methods.

3. Approaches to ldentification

The identification procedure can in general terms be
described as follows:

(a) Collect input—output data from the process.
(b) Settle for a set of candidate models.

(c) Pick one particular member of the model set as the
best representative, guided by the information in
the data.

Let us give a conceptual discussion of each of these
three steps. More details are given in the next section.

3.1 The Data

The data is sometimes recorded during a specifically
designed identification experiment. The objective then
is to get as good information about the system as
possible. Some methods to determine models require
special input sequences, and thus specific experiments.
In other cases data from normal operation of the system
have to be used.

Nowadays, data is almost always recorded by sam-
pling in discrete time using a digital computer (perhaps
after intermediate storage in a data recorder). We shall
from here assume that this is the case and we shall
denote the data set recorded over N samples by z".

3.2 The Set of Models

A set of candidate models is obtained by specifying
among which collection of models we are going to look
for a suitable one. For graphic models this will typically
be the set of all (reasonably smooth) curves cor-
responding to the set of all linear models in the cases
described in the previous section. For analytical models,
suitable sets are usually obtained by letting certain
parameters in the model descriptions range over a given
space (such as the a;, and b, of (2) or certain entries of
the matrices F, G and H in (3)). We shall generally
denote a set of models by /M.

A model set whose parameters are basically viewed
as vehicles for adjusting the fit to data, and do not reflect

physical considerations in the system, is called a black-
box model (set). Model sets with adjustable parameters
with physical interpretations may, accordingly, be called
gray boxes.

3.3 Picking a Particular Model in M Guided by Data

This is “the identification method.” There are obviously
a vast number of ways to select models. To give some
idea of the basic principles, it is useful to distinguish
between methods for graphic models and for sets of
analytical models.

(a) Graphic time-domain models. Graphic time-domain
models are basically impulse or step responses. Tech-
niques used to determine these are called transient
analyses. One simply applies an (approximate) impulse
or a step as input and records the corresponding output.
If the signal-to-noise ratio is good for the measurements,
valuable information about static gain and dominating
time constants can be obtained in this manner. There
are certain techniques for approximating given step
responses with analytical, low-order models, based on
the tangent with the largest slope; see Rake (1980)
and Identification: Transient- and Frequency-Response
Methods. The impulse response can also be obtained as
the cross-correlation function between the output and
the input, when the input sequence is white noise; see
for example, Identification: Correlation Methods and
Godfrey (1980). Apparatus that performs such cor-
relation analysis is commercially available.

(b) Graphic frequency-domain models. A direct way of
determining the value of the frequency-response func-
tion of a system at a given frequency is to use a sinusoidal
input of that frequency, let the transient die out, and
record the phase shift and amplitude change of the
output sinusoid. Formally, in discrete time (7 = sam-
pling interval) we have

u(t) = uy sin(wkT) forkT<t<(k+1)T (5)
y(kT) =y, sin(wkT + ¢) + transient (6)

The frequency-response function H(e'”) is then deter-
mined from

argH(e“") = ¢,  [H(E“D|=y,/uy,  (7)
The experiment is repeated for a number of different
frequencies w in the range of interest, and a table or
graph of H(e'") can be constructed. This technique is
known as frequency analysis.

If the measurements are noise-corrupted so that it is
difficult to determine y, and ¢ directly, it is useful to
multiply y(kT') by sin(kTw) and by cos(kTw), respect-
ively, and sum over a number of observations. The
phase shift and amplitude gain can then be determined
more accurately. The technique is known as frequency
analysis by the correlation methods, and equipment for
this is commercially available.

With more sophisticated data analysis one may, so to
speak, apply all frequencies at the same time and sort
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them out afterwards by Fourier techniques. This gives
a frequency-response function

H(e) = Y(e)/U(e") @)
where Y and U are the discrete Fourier transforms
(DFT) of the output and input sequences, respectively.
When noise affects the system, (8) is usually a bad
estimate (“the periodogram estimate”), since no noise
reduction is obtained. Instead various smoothing filters
are applied to (8): weighted averages over certain fre-
quency windows are formed. Such techniques, known as
spectral analysis, are further described in, for example,
Jenkins and Watts (1969) and Identification: Frequency-
Domain Methods.

(c) Analytical models. Most modern identification
methods deal with the estimation of analytical models,
usually described in the time domain. Detailed descrip-
tions of such methods are given in Identification: Maxi-
mum Likelihood Method, Identification: Time-Domain
Methods; Identification: Recursive Methods; Identi-
fication: Least Squares Method; Identification: Asymp-
totic Theory; Identification: Instrumental Variable Tech-
niques; see also Goodwin and Payne (1977), Astrom
(1980) and Astrom and Eykhoff (1971). The basic idea
behind such methods is the following one. Let each of
the candidate models “guess” (predict) the next output
y(t) based on the information in z'~'. Pick that model
which produces the best (“smallest”) sequence of errors
between guesses and actually recorded outputs. These
identification methods are thus characterized by a cri-
terion of fit between a model and the recorded sequence
of data.

4. The Identification Procedure

The identification procedure is, in principle, described '

by the three items listed above: data, model set and

identification criterion. In practice, the procedure is -

characterized by a number of choices which we now list.

Experiment design. The problem here is how to design
the identification experiment so that it becomes suitably
informative. The choice of inputs, sampling rates, pre-
sampling filters, feedback configurations, signals to be
measured, etc. are further discussed in Goodwin and
Payne (1977) and Identification: Experiment Design.
Practical limitations and how they may affect the identi-
fication result are described in the articles Identification:
Practical Aspects.

Choice of model set. To select the set of candidate
models is without doubt the most important and, at the
same time, the most difficult choice. It is here that a
priori knowledge and engineering intuition and insight
has to be combined with formal properties of models
and identification methods to facilitate a good result
from the identification exercise. Some aspects are dis-
cussed in Identification: Model Structure Determination
and Validation of Identified Models. The importance of
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making use of available insights is further illustrated in
the application example below.

Choice of criterion of fit. How to evaluate the quality
of a particular model from data is a crucial issue, which
is further discussed in Identification: Time-Domain
Methods.

Calculation of the best model. With given data and a
fixed model set and a chosen criterion of fit, the “best”
model is implicitly defined. It remains “only” to cal-
culate it, which may involve extensive computations.
Good numerical algorithms are required in order to
allow for reliable and inexpensive calculations. Some
computational aspects are included in Identification:
Time-Domain Methods and Identification: Least Squares
Method; see also Gupta and Mehra (1974).

In several applications, the models are required on
line, as the system operators and more data becomes
available. The reason could be that the models are to
be used for some on-line decision, like control (adaptive
control), filter tuning (e.g., adaptive noise cancellation)
or monitoring (fault detection). This implies certain
restrictions on how to calculate the estimates. Such
methods are called recursive identification methods (or
on-line or real-time identification) and are discussed,
for example, in Ljung and Soderstréom (1983) and
Identification: Recursive Methods.

Model validation. Once the best model available in
the model set has been determined it remains to test
whether it is “good enough,” that is, whether it is valid
for its purpose. This is the problem of model validation,
which is further described in Validation of Identified
Models and  Identification: ~ Model  Structure
Determination.

The whole identification procedure is typically an
iterative one, in which earlier made choices have to be
revised after the model validation step and portions of
the procedure repeated. This is illustrated in Fig. 1.

5. The Identification Tool

System identification has become an important tool for
solving a number of modelling problems in engineering.
Some aspects of the applicability of this tool to real-
life problems are discussed in Identification: Practical
Aspects. Here, we shall briefly comment upon what this
tool should look like in the hand of the user. The
identification procedure is, as pointed out in Fig. 1,
typically an iterative one, where insights and judge-
ments of the user are mingled with formal calculations,
extensive data handling and complex algorithms. To
make the tool an efficient one, it is therefore more or
less necessary to package the software in an interactive
environment, with man-machine communication via
graphical displays. Several such packages have been
developed. A well-known one, IDPAC, developed at
the Lund Institute of Technology, Sweden, is described
by Astrom (1980) and Wieslander (1979).



