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Preface

The structure of the present lecture notes on the Lagrangian mechanics of
particles and fields is based on achieving several goals. As a first goal, I
wanted to model these notes after the wonderful monograph of Landau and
Lifschitz on Mechanics [12], which is often thought to be too concise for
most undergraduate students. One of the many positive characteristics of
Landau and Lifschitz’s Mechanics, however, is that Lagrangian mechanics
is introduced in its first chapter and not in later chapters as is usually done
in more standard textbooks used at the sophomore/junior undergraduate
level.! Consequently, the Lagrangian method becomes the centerpiece of
the present course and provides a continuous thread throughout the text.
This course has been taught at Dartmouth College and Saint Michael’s
College in approximately the same format proposed in these lecture notes.

As a second goal, the lecture notes introduce several numerical investi-
gations of dynamical equations appearing throughout the text. These nu-
merical investigations present an interactive pedagogical approach, which
should enable students to begin their own numerical investigations. As a
third goal, an attempt was made to introduce historical facts (whenever ap-
propriate) about the pioneers of Classical Mechanics. Much of the historical
information included in the Notes is taken from excellent books by René
Dugas [4], Wolfgang Yourgrau and Stanley Mandelstam [18], and Cornelius
Lanczos [11]. In fact, from a pedagogical point of view, this historical per-
spective helps educating undergraduate students in establishing the deep
connections between Classical and Quantum Mechanics, which are often
ignored or even inverted (as can be observed when students are surprised

!The reader is invited to read A call to action by E. F. Taylor [Am. J. Phys. 71, 423-
425 (2003)], which promotes a reorganization of undergraduate physics education that
includes an early introduction of Lagrangian Mechanics (the Principle of Least Action)
into the physics curriculum.
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to learn that Hamiltonians have an independent classical existence). As a
fourth and final goal, I wanted to keep the scope of these notes limited to a
one-semester course in contrast to standard textbooks, which often include
an extensive review of Newtonian Mechanics as well as additional material
such as Hamiltonian chaos.

It is expected that students taking this course will have had a one-
year calculus-based introductory physics course followed by a one-semester
course in Modern Physics. Ideally, students should have completed their full
calculus sequence and, perhaps, have taken a course on ordinary differential
equations. On the other hand, this course should be taken before a rigorous
course in Quantum Mechanics in order to provide students with a sound
historical perspective involving the connection between Classical Physics
and Quantum Physics. Hence, the fall semester of the junior year provides
a perfect niche for this course. Topics identified with an asterisk can also
be included in a more advanced course.

The standard topics covered in these notes are: The Calculus of Vari-
ations (Chapter 1), Lagrangian Mechanics (Chapter 2), Hamiltonian Me-
chanics (Chapter 3), Motion in a Central Field (Chapter 4), Collisions and
Scattering Theory (Chapter 5), Motion in a Non-Inertial Frame (Chapter
6), Rigid Body Motion (Chapter 7), Normal-Mode Analysis (Chapter 8),
and Continuous Lagrangian Systems (Chapter 9). Each chapter contains a
set of problems with variable level of difficulty. Lastly, in order to ensure
a self-contained presentation, a summary of mathematical methods associ-
ated with linear algebra and numerical analysis is presented in Appendix A.
Appendix B presents a brief introduction to the applications of the Jacobi
and Weierstrass elliptic functions in Classical Mechanics; see Whittaker’s
textbook [17] for many more applications. Lastly, Appendix C presents a
brief summary of differential geometric methods in the modern formulation
of Hamiltonian mechanics and perturbation theory.

Several innovative topics not normally discussed in standard undergrad-
uate textbooks are included throughout the notes. In Chapter 1, a complete
discussion of Fermat’s Principle of Least Time is presented, from which
a generalization of Snell’s Law for light refraction through a nonuniform
medium is derived and the equations of geometric optics are obtained [3].
We note that Fermat’s Principle proves to be an ideal introduction to varia-
tional methods in the undergraduate physics curriculum since students are
already familiar with Snell’s Law of light refraction.

In Chapter 2, we establish the connection between Fermat’s Principle
of Least Time and Maupertuis-Jacobi’s Principle of Least Action. In par-
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ticular, Jacobi’s Principle introduces a geometric representation of single-
particle dynamics that establishes a clear pre-relativistic connection be-
tween Geometry and Physics. Next, the nature of mechanical forces (e.g.,
active versus passive forces) is discussed within the context of d’Alembert’s
Principle, which is based on a dynamical generalization of the Principle of
Virtual Work. Lastly, the fundamental link between the energy-momentum
conservation laws and the symmetries of the Lagrangian function is first dis-
cussed through Noether’s Theorem and then Routh’s procedure to eliminate
ignorable coordinates is applied to a Lagrangian with symmetries.

In Chapter 3, we present a brief discussion of Hamiltonian optics and
the wave-particle duality that established the connection between Classical
Physics and Quantum Physics. The problem of charged-particle motion in
an electromagnetic field is also investigated by the Lagrangian method in
the three-dimensional configuration space and the Hamiltonian method in
six-dimensional phase space. This important physical example presents a
clear link between the Lagrangian and Hamiltonian methods. In Chapter
4, we discuss the role of the Laplace-Runge-Lenz vector invariant in deter-
mining the shape of the Kepler bounded orbit. We also use the Laplace-
Runge-Lenz vector to study the precession of a perturbed Keplerian orbit.
In Chapter 5, we present a complete solution of the soft-sphere scattering
problem as well as the problem of elastic scattering by a hard surface. In
Chapter 9, we present the variational derivations of the Schroedinger equa-
tion and the Euler equations for a perfect fluid. Using the Noether method,
we also derive their respective conservation laws.

In Appendix B, we present an introduction to the applications of the
Jacobi and Weierstrass elliptic functions in Classical Mechanics. These in-
teresting functions used to be part of the standard curriculum in Classical
Mechanics [17, 12] and have now all but disappeared from modern text-
books (7, 13]. For the Jacobi elliptic function, we consider the problems
of motion in a quartic potential, while for the Weierstrass elliptic function,
we consider the problem of motion in a cubic potential. The problem of
the planar pendulum is used to establish the connection between the Ja-
cobi and Weierstrass elliptic functions. Lastly, in Appendix C, we present
a brief introduction to noncanonical Hamiltonian mechanics and canonical
Hamiltonian perturbation theory.

My interest in Lagrangian Mechanics was awakened more than 30 years
ago when I was an undergraduate student at the Colleége Militaire Royal
de Saint Jean (Canada). One of my professors (Fernand Ledoyen) bravely
taught me Lagrangian Mechanics with Landau and Lifschitz [12] and Arnold
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[1] as our constant companions. I remember being immediately struck
by the beauty of Lagrangian Mechanics and the power of its methods.
I have used Lagrangian methods in my own research in plasma physics
for the past 20 years. I would like to thank my Lagrangian collaborators
Allan N. Kaufman (University of California at Berkeley) and Eugene (Gene)
R. Tracy (College of William and Mary) for their friendship and support
during this time.

Lastly, I owe a great debt of love and gratitude to my wife (Dinah
Larsen) and son (Peter Brizard Larsen) and I thank them for their patience
and understanding during the arduous process of writing this book.

Alain Jean Brizard
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Chapter 1

The Calculus of Variations

A wide range of equations in physics, from quantum field and superstring
theories to general relativity, from fluid dynamics to plasma physics and
condensed-matter theory, are derived from action (variational) principles
[2, 15]. The purpose of this Chapter is to introduce the methods of the
Calculus of Variations that figure prominently in the formulation of action
principles in physics.

1.1 Foundations of the Calculus of Variations

1.1.1 A Simple Minimization Problem

It is a well-known fact that the shortest distance between two points in
Euclidean space is calculated along a straight line joining the two points.
Although this fact is intuitively obvious, we begin our discussion of the
problem of minimizing certain integrals in mathematics and physics with a
search for an explicit proof. In particular, we prove that the straight line
yo(x) = mz yields a path of shortest distance between the two points (0, 0)
and (1, m) on the (z,y)-plane as follows.

First, we consider the length integral

iyl :/0 VIt (&) dz, (1.1)

where y' = y’(z) and the notation L[y] is used to denote the fact that the
value of the integral (1.1) depends on the choice we make for the function
y(z); thus, L[y] is called a functional of y. We insist, however, that the
function y(z) satisfy the boundary conditions y(0) = 0 and y(1) = m.
Next, we introduce the modified function

y(z;e) = yo(z) + edy(x),
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where yo(r) = mz and the variation function dy(z) is required to satisfy
the prescribed boundary conditions dy(0) = 0 = dy(1). We thus define the
modified length integral

1
Llyo + €dy) =/ V1+ (m+edy)?dx
0

as a function of € and a functional of Jy. We now show that the func-
tion yo(z) = mx minimizes the integral (1.1) by evaluating the following
derivatives

d ey
\T’f—m [6y(1) — 5y(0)] = O,

and

d2 1 (6y’)2
(Fﬁ[yo +66y])6:0 = /0 (—‘——1 +m2)3/2 dx > O’

which holds for a fixed value of m and all variations dy(x) that satisfy the
conditions dy(0) = 0 = éy(1). Hence, we have shown that y(z) = mz
minimizes the length integral (1.1) since the first derivative (with respect
to €) vanishes at € = 0, while its second derivative is positive at € = 0.
We note, however, that our task was made easier by our knowledge of the
actual minimizing function yo(x) = mz; without this knowledge, we would
be required to choose a trial function yo(z) and test for all variations dy(x)
that vanish at the integration boundaries.

Another way to tackle this minimization problem is to find a way to
characterize the function yo(z) that minimizes the length integral (1.1), for
all variations dy(z), without actually solving for y(z). For example, the
characteristic property of a straight line y(z) is that its second derivative
vanishes for all values of z. The methods of the Calculus of Variations
introduced in this Chapter present a mathematical procedure for trans-
forming the problem of minimizing an integral to the problem of finding
the solution to an ordinary differential equation for y(z). The mathemati-
cal foundations of the Calculus of Variations were developed by Leonhard
Euler (1707-1783) and Joseph-Louis Lagrange (1736-1813), who developed
the mathematical method for finding curves that minimize (or maximize)
certain integrals.
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1.1.2 Methods of the Calculus of Variations
1.1.2.1  Euler’s First Equation

The methods of the Calculus of Variations transform the problem of mini-
mizing (or maximizing) an integral of the form

b
Flyl =/ F(y,y;z)dz (1.2)

(with fixed boundary points a and b) into the solution of a differential equa-
tion for y(x) expressed in terms of derivatives of the integrand F(y,y';x),
which is assumed to be a smooth function of y(z) and its first derivative
y'(z), with a possible explicit dependence on z.

The problem of eztremizing the integral (1.2) will be treated in analogy
with the problem of finding the extremal value of any (smooth) function
f(z), i.e., finding the value z, such that
Peo) =t 2 (fo+e) = fa)) = 1 (swren) =0

e—0 € h \de o ’
where h # 0 is an arbitrary constant factor.! First, we introduce the first-
order functional variation §F[y; 0y] defined as

S Fly; 8y) = (%f [y+€5y]> e=0

b
s [%(/a F(y+edy,y +edy,x) dx)jl o (L3)

€=0

where dy(z) is an arbitrary smooth variation of the path y(z) subject to
the boundary conditions dy(a) = 0 = dy(b), i.e., the end points of the
path are not affected by the variation (see Fig. 1.1). By performing the
e-derivatives in the functional variation (1.3), which involves partial deriva-
tives of F'(y,y’, z) with respect to y and v/, we find

_OF _OF
Oy(z) 0y’ ()

1An eztremum point refers to either the minimum or maximum of a one-variable func-
tion. A critical point, on the other hand, refers to a point where the gradient of a
multi-variable function vanishes. Critical points include minima and maxima as well as
saddle points (where the function exhibits maxima in some directions and minima, in
other directions). A function y(z) is said to be a stationary solution of the functional
(1.2) if the first variation (1.3) vanishes for all variations dy that satisfy the boundary
conditions.

b
i) = [ [aycr) oy (@) dz,




