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The importance of money essentially flows from it
being a link between the present and the future.

John Maynard Keynes

Money and currency are very strange things.
They keep on going up and down and no one knows why;
If you want to win, you lose, however hard you try.

Gilles If Muisis



Preface

This book is devoted to some mathematical problems encountered by the au-
thor in his capacity as a mathematician turned financial engineer at Bankers
Trust and Deutsche Bank. The exposition is restricted mainly to problems
occurring in the foreign exchange (forex) context not only due to the fact that
it is the author’s current area of responsibility but also because mathematical
methods of financial engineering can be described more vividly when the expo-
sition is centered on a single topic. Studying forex is interesting and important
because it is the grease on the wheels of the world economy. Besides, while
the meaning of some financial instruments is difficult to comprehend without
prior experience, everyone who has ever travelled abroad has had to exchange
currencies thus acquiring direct experience of such concepts as spot forex rate,
bid-ask spread, transaction costs (in the form of commissions), etc. At the
same time, the reader who acquires working knowledge of the material pre-
sented in this book should be able to handle efficiently most of the problems
occurring in equity markets and some of the problems relevant for fixed income
markets.

If one were to choose just one word in order to characterize financial mar-
kets, that word would be uncertainty since it is their dominant feature. Some
investors consider uncertainty a blessing, while others think it a curse, yet
both groups participate in the intricate inner workings of the markets. Fhe
fact that foreign exchange rates (relative prices of different currencies), as well
as prices of bonds (government or corporate obligations to repay debts) and
stocks (claims on future cash flows generated by companies) are random and
financial investments are risky was realized long ago and has been a source
of fascination for economists, mathematicians, speculators, philosophers, and
moralists, not to mention laymen.

Due to the random nature of financial markets, trying to predict future
prices of individual financial instruments makes little sense. However, one
can introduce so-called derivative instruments (the name indicates that their
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prices are derived from the prices of some underlying financial instruments,
namely, currencies, bonds, stocks, credits, etc.), which can be used in order
to cope with financial risks and uncertainties. Alternatively, one can develop
optimal investment strategies in the presence of uncertainty which are based
on diversification and creation of portfolios of different instruments which are
less risky than individual instruments. In the present book we show how to
value derivatives and construct optimal portfolios in the forex context by using
modern mathematical methods.

This book is devoted to various problems which financial engineers face
in the market place and gives a detailed account of mathematical methods
necessary for their solution. Even though the exposition is presented from
a financial engineer’s prospective, the author tried his best to expose all the
necessary details. At the same time, mathematical rigor as such was not high
on the author’s priority list. In particular, most of the results are not formu-
lated as theorems and lemmas since this traditional format is not adequate
for the purposes of the present exposition. We start with a brief -survey of
relevant mathematical concepts. After that we present an in-depth discussion
of discrete-time models of forex. We distinguish between single-period and
multi-period models. In both cases the corresponding models are too stylized
to be of practical importance but they do allow the reader to understand some
of the issues which occur in more complicated situations. For this reason, and
because of their aesthetic appeal, these models deserve a careful study. We
analyze conditions which guarantee that a particular model is financially rea-
sonable and show how to price derivatives and solve the optimal investment
problem for such models. Once discrete-times models are mastered, we switch
our attention to more practically useful continuous-time models. We describe
in detail a variety of models, starting with the standard Black-Scholes model
and ending with rather involved stochastic volatility models with a special em-
phasis on practical aspects. We then show how to price derivatives and solve
the optimal investment problem in the continuous setting.

Recently, several very good (and some not so good) books dealing with
various aspects of financial engineering were published. The author hopes that
the present book can complement the existing literature on the subject and
will be useful to the reader in more than one way. In fact, when deciding
whether to write this book, he followed the advice of Franz Kafka who once
said “Such books as make us happy, we could, if need be, write ourselves”.

In the process of writing this book the author enjoyed help, advice, and
support of various individuals. First and foremost, he is grateful to his wife
Marsha, father Yefim, mother Eugenia, and daughter Rachel. Next, he is also
deeply grateful and much indebted to his fellow quants, especially to Christo-
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pher Berry, Stewart Inglis, and William McGhee, as well as to Peter Carr, Brian
Davidson, Vladimir Finkelstein, Ken Garbade, Arvind Hariharan, Tom Hyer,
Andrew Jacobs, Bin Li, Dmitry Pugachevsky, Eric Reiner, and Paul Romanelli.
Last but not least, he greatly benefited from the interactions with a group of
outstanding managers and traders including Hal Herron, Dan Almeida, Jim
Turley, Kevin Rodgers, Matt Desselberger, Perry Parker, and Andrew Baxter.

Reasonable efforts were made to publish reliable information. However, in
a book like this one typing and other errors are unavoidable. The author and
the publisher do not assume any responsibility or liability for the validity of
the information presented in this book and for the consequences of its use or
misuse. The book represents only the personal views of the author and does
not necessarily reflect the views of Deutsche Bank, its subsidiaries or affiliates.

Finally, a few words about the epigraphs. J. M. Keynes needs no introduc-
tion. The Abbot Gilles li Muisis of Tournai lived in the fourteenth century.
His wonderful verse is quoted by P. S. Lewis in “Later Medieval France” and
by B. W. Tuchinan in “A Distant Mirror”.

Alexander Lipton
New York and London
March 2001.
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