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Preface

The fourth edition of Fundamentals of Algebra and Trigonometry reflects the
continuing change in the needs and abilities of students who enroll in precalculus
mathematics courses. The goal of this new edition is to maintain the mathematical
soundness of earlier editions, but to make the tone of the book less formal by means
of rewriting, placing more emphasis on graphing, and adding many new exercises,
applied problems, examples, and figures. Optional exercises for students who use
hand-held calculators are included in appropriate sections. The use of a second color
to highlight figures and important statements will further enhance the appeal of the
text to students.
This edition has greatly benefited from suggestions and comments of the

following reviewers and survey respondents:

A. N. Aheart (West Virginia State College), C. C. Alexander (University of Mississippi),

J. Baker (Western Carolina University), P. Bauer (University of Wisconsin, Marshfield),

J. Bennett (University of Evansville), B. P. Bockstege (Broward Community College), R. Dana

(Lake City Community College), D. Deckard (University of Michigan), B. C. Detwiler

(Western Kentucky University), J. Dewar (Loyola Marymount University), F. Dodd (University

of South Alabama), W. Duncan (McLennan Community College), C. V. Duplissey (University

of Arkansas-Little Rock), L. Estergard (Brevard Community College), H. Fox (University of

Wisconsin, Waukesha), L. E. Fuller (Kansas State University), R. Georing (Phoenix College),

H. E. Hall (DeKalb Community College), R. Hamm (College of Charleston), D. A. Happel

(Briar Cliff College), S.E. Hardy (Georgia State College), W. Holstrom (Elgin Community

College), C. G. Hunkovsky (Cochise College), G. Kolettis (University of Notre Dame),

J. R. Loughrey (Canada College), L. J. Luey (City College of San Francisco),

R. D. McWilliams (Florida State University), C. Miracle (University of Minnesota),

P. R. Montgomery (University of Kansas), J. J. Morrell (Ball State University), G. W. Nelson

(North Dakota State University), B. Partner (Ball State University), J. W. Patterson (Atlanta

Junior College), W. D. Popejoy (University of Northern Colorado), M. W. Rennie (Washington

State University), W. Sanders (Houston State University), D. Sherbert (University of Illinois),

P. Sherman (University of Oregon), M. Shurlds (Mississippi State University), L. Sons

(Northern Illinois University), D. R. Stocks (University of Alabama-Birmingham), A. Sullen-

berger (Tarrant County Junior College), W. R. Sunkman (Bemidji State College), D. F. Thames

(Lamar University), J. L. Whitcomb (University of North Dakota), S. Whitman (University of

Alabama), T. L. Williams (Idaho State University), W. Wright (Loyola Marymount University),

K. Yanosko (Florida State University).

In addition, I wish to single out as especially helpful the detailed reviews of various
stages of the revised manuscript by Donald L. Dykes (Kent State University), Mark
P. Hale, Jr. (University of Florida), Douglas W. Hall (Michigan State University),
A. J. Hulin (University of New Orleans), Burnett Meyer (University of Colorado),
and Russell J. Rowlett (University of Tennessee).

I am also grateful to the staff of Prindle, Weber & Schmidt, Inc., for their
cooperation and valuable assistance. In particular, Elizabeth Thomson was very
helpful in her role as production editor, and Executive Editor John Martindale was a
constant source of advice and encouragement.

Special thanks are due to my wife Shirley and the members of our family: Mary,
Mark, John, Steve, Paul, Tom, Bob, Nancy, and Judy. All have had an influence on
the book — either directly, through working exercises, proofreading, or typing, or
indirectly, through continued interest and moral support.

To all of the people named here and to the many unnamed students and teachers
who have helped shape my views about precalculus mathematics, I express my
sincere appreciation.

Earl W. Swokowski
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CHAPTER 1

Fundamental
Concepts

of Algebra

The material in this chapter is basic to the study of algebra. We begin by
discussing properties of real numbers. Next we turn our attention to exponents
and radicals, and how they may be used to simplify complicated algebraic
expressions.

ALGEBRA: A POWERFUL LANGUAGE AND TOOL

A good foundation in algebra is essential for advanced courses in mathematics, the
natural sciences, and engineering. It is also required for problems which arise in
business, industry, statistics, and many other fields of endeavor. Indeed, every
situation which makes use of numerical processes is a candidate for algebraic
methods.

Algebra evolved from the operations and rules of arithmetic. The study of
arithmetic begins with addition, multiplication, subtraction, and division of
numbers, such as

4+ 7, (37)(681), 79 —22 and 40 +8.

In algebra we introduce symbols or letters a, b, ¢, d, x, y, etc., to denote arbitrary
numbers and, instead of special cases, we often consider general statements such as

a+b, cd, x—y and x-=+a

This language of algebra serves a two-fold purpose. First, it may be used as a
shorthand, to abbreviate and simplify long or complicated statements. Second, itis
a convenient means of generalizing many specific statements. To illustrate, at an
early age, children learn that

24+3=3+4+2, 447=7+4, 5+49=9+5, 1+8=8+1

and so on. In words, this property may be phrased “if two numbers are added, then
the order of addition is immaterial; that is, the same result is obtained whether the
second numberisadded to thefirst, or the first numberis added to the second.” This
lengthy description can be shortened, and at the same time made easier to
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understand, by means of the algebraic statement
a+b=b+a

where a and b denote arbitrary numbers.

Many illustrations of the generality of algebra may be found in formulas used
in science and industry. For example, if an airplane flies at a constant rate of 300
mph (miles per hour) for two hours, then the distance it travels is given by

(300)(2), or 600 miles.
If the rate is 250 mph and the elapsed time is 3 hours, then the distance traveled is
(250)(3), or 750 miles.

Ifweintroduce symbols, and let r denote the constant rate, ¢t the elapsed time, and d
the distance traveled, then the two illustrations we have given are special cases of
the general algebraic formula

d=rt.

When specific numerical values for r and t are given, the distance d may be found
readily by an appropriate substitution in the formula. Moreover, the formula may
also be used to solve related problems. For example, suppose the distance between
two cities is 645 miles, and we wish to find the constant rate which would enable an
airplane to cover that distance in 2 hours and 30 minutes. Thus we are given

d = 645 miles, t = 2.5hours

and the problem is to find r. Since d = rt it follows that

and hence for our special case,

645
_—_———= h_
r 75 258 mp

Thatis,ifan airplane flies at a constant rate of 258 mph, then it will travel 645 miles
in 2 hours and 30 minutes. In like manner, given r, the time ¢ required to travel a
distance d may be found by means of the formula

d

[=—.

r
The preceding example indicates how the introduction of a general algebraic
formula not only allows us to solve special problems conveniently, but also to
enlarge the scope of our knowledge by suggesting new problems that can be

considered.

We have given only two elementary illustrations of the value of algebraic
methods. There are an unlimited number of situations where a symbolic approach
may lead to insights and solutions that would be impossible to obtain using only



(1.1)

(1.2

(1.3)

1.4

1.2 REAL NUMBERS

numerical processes. As you proceed through this text and go on to either more
advanced courses in mathematics or fields which employ mathematics, you will
become further aware of the importance and the power of algebraic techniques.

REAL NUMBERS

Real numbers are used considerably in all phases of mathematics and you are
undoubtedly well acquainted with symbols which are used to represent them, such
as

49
1, 73, -5, A \/5 0, J—85 033333..., 596.25

and so on. The real numbers are said to be closed relative to operations of addition
(denoted by +)and multiplication (denoted by - ). This means that to every pair a, b
of real numbers there corresponds a unique real number a + b called the sum of a
and b and a unique real number a - b (also written ab) called the product of a and b.
These operations have the following properties, where all lower-case letters denote
arbitrary real numbers, and where 0 and 1 are special real numbers referred to as
zero and one, respectively.

Commutative Properties

a+b=>b+a, ab = ba

Associative Properties

a+b+c)=(a+b) +ec a(bc) = (ab)c

Identities

a+0=a=0+a, a1l=a=1-a

Inverses
For every real number a, there is a real number denoted by —a such that

a+(—a)=0=(—a)+a

For every real number a # 0, there is a real number denoted by 1/a such that

-

(1.5) Distributive Properties

a(b + ¢) = ab + ac, (a + b)c = ac + bc
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Example 1

Solutions

The equals sign, =, used in properties (1.1)—(1.5) means, of course, that the
expressions immediately to the right and left of the sign represent the same real
number. The real numbers 0 and 1 are sometimes referred to as the additive identity
and multiplicative identity, respectively. We call — a the additive inverse of a (or the
negative of a). If a # 0, then 1/a is called the multiplicative inverse of a (or the
reciprocal of a). The symbol a~ ! is often used in place of 1/a. Thus, by definition,

Verify the following special cases of properties (1.2) and (1.5).
@ 24+3+4)=02+3)+4

(b) 2:(3:4)=(2-3)-4

() 2.3+4)=2.3+2-4

d 2+3)4=2-4+3.4

To verify each of parts (a)—(d) we perform the operations indicated on opposite
sides of the equals sign and observe that the resulting numbers are identical. Thus

(@) 2+(3+4)=2+7=9
Q+3)+4=5+4=9
(b) 24(3.4)=2.12 = 24
(2+3)e4=6.4=24
© 2:3+4)=2.7=14
2.3+2.4=6+8=14
(d) Q+3)ed=5.4=20

204 +3.4=8+12=20

Since a + (b +¢) and (a +b) + ¢ are always equal we may, without
ambiguity, use the symbol a + b + c to denote the real number they represent.
Similarly, the notation abc is used to represent either a(bc) or (ab)c. An analogous
situation exists if four real numbers a, b, ¢, and d are added. For example, we could
consider

(@+b)+(c+d, a+[b+c)+d], [(a+b)+c]+d,

andsoon.Itcan beshown thatregardless of how the four numbers are grouped, the
sameresultisobtained, and consequentlyitiscustomary towritea + b + ¢ + dfor
any of these expressions. Furthermore, it follows from the Commutative
Properties (1.1) that the numbers can be interchanged in any way. For example,

a+b+c+d=a+d+c+b=a+c+d+b.

We shall justify a manipulation of this type by referring to “commutative and
associative properties of real numbers” A similar situation exists for



Example 2

Solutions

(1.6)

.7

1.2 REAL NUMBERS

multiplication, where the expression abcd is used to denote the product of four real
numbers.

The Distributive Properties (1.5) are useful for finding products of many
different types of expressions. The next example provides two illustrations. Others
will be found in the exercises.

If a. b, c. and d denote real numbers, show that
(@) ab+c+d)y=ab+ ac+ ad
(b) (a+ b)c+ d)=ac+ bc + ad + bd

Each product may be found by using property (1.5) several times. The reader
should supply reasons for each step in the following.

(a) alb + c+ d)y=a[(b+ c) + d]
=ab+c)+ ad
= (ab + ac) + ad
=ab + ac + ad
(b) (a+ b)(c + d)=(a+ b)c+ (a+ b)d

= (ac + bc) + (ad + bd)
= ac + bc + ad + bd

Ifa = band ¢ = d, then since aand b are merely different names for the same
real number, and likewise for ¢ and d, it follows that a + ¢ = b + d and ac = bd.
This is often called the substitution principle, since we may think of replacing a by b
and cbydintheexpressionsa + cand ac. Asa special case, using the fact thatc = ¢
gives us the following rules.

Ifa=b,thena+c=b+c.
If a = b, then ac = be.

We sometimes refer to the rules in (1.6) by the statements “any number ¢ may be
added to both sides of an equality” and “both sides of an equality may be multiplied
by the same number ¢.” These rules constitute two extremely important algebraic
manipulations. We shall make heavy use of them in Chapter 2, in conjunction with
solving equations.

Properties(1.1)—(1.5)can be used to prove the following results (see Exercises
36 and 37).

a+0 = 0 for every real number a.
If ab = 0, then either a=0 or b = 0.

The statements in (1.7) imply that ab = 0 if and only if either a = 0 or b = 0. The
phrase “if and only if,” which is used throughout mathematics, always has a two-
fold character. Here it means that if ab = 0. then a = 0 or b = 0 and. conversely, if
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(1.8

1.9

Example 3

Solution

(1.10)

a = 0or b = 0, then ab = 0. Consequently, if both a # 0 and b # 0, then ab # 0;
that is, the product of two nonzero real numbers is always nonzero.

The following rules for negatives can also be proved directly from properties
(1.1)—(1.5). (See Exercise 41.)

—(—a)=a
(—a)b = —(ab) = a(—b)
(—a)(—b) = ab

(—=1)a= —a

The operation of subtraction (denoted by —) is defined by

a—b=a+(-b)

The next example indicates that the Distributive Properties hold for subtraction.

If a, b, and ¢ are real numbers, show that

a(b — ¢) = ab — ac.

We shall list reasons after each step as follows.
alb — ¢)=a[b + (—¢)] (1.9)
=ab + a(—c) (1.5)
= ab + [—(ac)] (1.8)
=ab — ac (1.9)

If b # 0, then division (denoted by =) is defined by

a+b=a(%) =ab!

Thesymbol a/bis oftenusedin place ofa + b,and werefer toitas the quotient of by
b or the fraction a over . The numbers a and b are called the numerator and
denominator, respectively, of the fraction. It isimportant to note that since 0 has no
multiplicative inverse, a/b is not defined if b = 0; that is, division by zero is not
permissible. Also note that

. _1_ |
ITb—B—b .

Thefollowing rules for quotients may be established, where all denominators
are nonzero real numbers.
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Example 4

Solutions

1.2 REAL NUMBERS

%=2 if and only if ad = be
a ad
b bd
a —da a
~b b b
a ¢ a+c
b b b
a ¢ ad+ bc
b d” b
ac ac
b'd bd
a ¢ ad ad
b d bc be
) 2 9 29 2.9
Find (a) §+§ (b) 35 (© 3753
Using (1.11) we have
&) 2,.9_(2:9+@+9) _10+27_37
3 5 3.5 15 15
29 2.9 18 6.3 6
L 3'57°3.5 15 5.3 5
o 2,925 25 10
35 39 3.9 27

The positiveintegers 1,2,3,4,... may be obtained by adding the real number 1
successively to itself. The negatives, — 1, —2, —3, —4, ..., of the positive integers
are referred to as negative integers. The integers consist of the totality of positive
and negative integers together with the real number 0.

Observe that by the Distributive Properties, if a is a real number then

a+a=(1+1la=2a
and
at+a+a=(1+1+ 1)a=3a

Similarly the sum of four a@’s is 4a, the sum of five @’s is 5a, and so on.
Ifa,b,and careintegersand ¢ = ab,then aand b are called factors, or divisors,
of c¢. For example the integer 6 may be written as

6=2.3=(=2)(=3)=1:6=(—=1)(—6).

Hence 1, —1, 2, —2, 3, —3, 6, and — 6 are factors of 6.

7
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A positive integer p different from 1 is prime if its only positive factors are 1
and p. The first few primes are 2, 3,5,7,11,13,17, and 19. One of the reasons for the
importance of prime numbersis that every positive integer a different from 1 can be
expressed in one and only one way (except for order of factors) as a product of
primes. (The proof of this result will not be given in this book.) Asexamples, we have

12=2+2.3, 126 =2+3.3.7, 540 =2.2.3.3.3.5.

A real number is called a rational number if it can be written in the form a/b,
where a and b are integers and b # 0.Real numbers that are not rational are called
irrational. The ratio of the circumference of a circle to its diameter is an irrational
real number and is denoted by =. Itis often approximated by the decimal 3.1416 or
by the rational number 22/7. We use the notation n ~ 3.1416 to indicate that r is
approximately equal to 3.1416. To cite another example, a real number a such that
a® = 2, where a? denotes a-a, is not rational. There are two such irrational

numbers denoted by the symbols ﬁ and —\/5.

Real numbers may be represented by decimal expressions. Decimal
representations for rational numbers either terminate or are nonterminating and
repeating. For example, it can be shown by long division that a decimal
representation for 7434/2310 is 3.2181818..., where the digits 1 and 8 repeat
indefinitely. The rational number 5/4 has the terminating decimal representation
1.25. Decimal representations for irrational numbers may also be obtained;
however, they are always nonterminating and nonrepeating. The process of finding
decimal representations for irrational numbers is usually difficult. Often some
method of successive approximation is employed. For example, the device learned
in arithmetic for extracting square roots can be used to find a decimal
representation for \/5 Using this technique we successively obtain the
approximations 1, 1.4, 1.41, 1.414, 1.4142, and so on.

Sometimes, it is convenient to use the notation and terminology of sets. A set
may be thought of as a collection of objects of some type. The objects are called
elements of the set. Capital letters 4, B, C, R, S, ... will often be used to denote sets.
Lower-caselettersa, b, x, y, ... willrepresent elements of sets. Throughout our work
Rwill denote the set of real numbers, and Z the set of integers. If every element of a
set Sis also an element of a set T, then Sis called a subset of T. For example, Zisa
subset of R. Two sets S and T are said to be equal, written S = T,if S and T contain
precisely the same elements. The notation S # T'means that Sand T arenotequal.

EXERCISES

In each of Exercises 1-10, justify theequality by stating only one of the properties (1.1)—(1.5).

1 (4:5)-4=4-(4.5) 2 3.(4+5=@4+5:-3
3 (4:5)-4=4.(5-4) 4 (4+5-3=4.3+5.3
5 3.(5+0)=3.5 6 3+(=3=0

7 1.2+3)=2+3 8 (1+2)+1=1+(1+2)

9 (1/44 =1 10 0-1=0
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Use properties (1.1)—(1.5) to find the products in Exercises 11-20, where all letters represent
real numbers.

_————

11
13
15
17
19

a(b + 3) + 2(b + 3) 12 cd+1)+5d+1)
(@a+2)b+3) 14 (c+5d+1)

2x(y + 2) — 3y + 2) 16 2p(6q + 5) — 3(6q + 5)
2x—3)(y +2) 18 (2p —3)(69 + 5)

(@r + 5)(3s + 6) 20 Gu+ )0 — 1)

In each of Exercises 21-30, write the expression as a rational number whose numerator is as
small as possible.

21

23

25

27

29

31

32

3 5 1 3
at3 2 5t3
52 4(1 3
63 A 5(5*2)
1 1 1 3 -5
2tate % 5%
13 3 2 7 3
— s 1 — — —
4 (2+ ) B 5+3%;
5(3 5 10 11
712 6 11 10

Show, by means of examples, that the operation of subtraction on R is neither
commutative nor associative.

Show that the operation of division, as applied to nonzero real numbers, is neither
commutative nor associative.

In Exercises 33—40, all letters denote real numbers and no denominators are zero.

33

34

1

. 1 1
Prove or disprove: — + — =
a

b a+b

Pr r di a a+a
ove or disprove: e
p b+c¢c b ¢

Prove the rules in Exercises 35—-40.

35
36

37

38

39

a= —aif and only if a = 0.

a<0=0 (Hint: Writea+0=a+(0+ 0)=a+0 + a-0and then add —(a-0) to both
sides.)

If ab = 0, then either a =0 or b = 0.
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c +
& b= (Hint: Write 4l =agb 4 cht and use the Distributive
b b b b b
Properties.)

41 Prove (1.8).

COORDINATE LINES

Itis possible to associate the set of real numbers with the set of all pointson aline/in
such a way that for each real number a there corresponds one and only one point,
and conversely, to each point P on [ there corresponds precisely one real number.
Such an association between two sets is referred to as a one-to-one correspondence.
We first choose an arbitrary point O, called the origin, and associate with it the real
number 0. Points associated with the integers are then determined by laying off
successive line segments of equal length on either side of O as illustrated in Figure
1.1. The points corresponding to rational numbers such as 23/5S and —1/2 are
obtained by subdividing the equal line segments. Points associated with certain

irrational numbers, such as , /2, can be found by geometric construction. For other
irrational numbers such as 7, no construction is possible. However, the point
corresponding to n can be approximated to any degree of accuracy by locating
successively the points corresponding to 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, and so
on. It can be shown that to every irrational number there corresponds a unique
pointon/and,conversely,every point thatisnot associated with a rational number
corresponds to an irrational number.

Figure 1.1

The number a that is associated with a point 4 on [is called the coordinate of
A.Anassignment of coordinates to points on /iscalled a coordinate system for /,and
lis called a coordinate line, or a real line. A direction can be assigned to [ by taking
the positive direction along / to the right and the negative direction to the left. The
positive direction is noted by placing an arrowhead on [ as shown in Figure 1.1.

The numbers which correspond to points to the right of 0 in Figure 1.1 are
called positive real numbers, whereas those which correspond to points to the left
of 0 are negative real numbers. The real number 0 is neither positive nor negative.
The set of positive real numbers is closed relative to addition and multiplication;
that is, if a and b are positive, then so is the sum a + b and the product ab.

Note that if a is positive, then —a is negative. Similarly, if —a is positive,
then —(—a) = a is negative. A common error is to think that —a is always a
negative number; however, this is not necessarily the case. For example, if



