- e e
- e e e a

TED LEWIS and

GLENN ANDERT
PAuL CALDER
ERICH GAMMA
WOLFGANG PREE
LARRY ROSENSTEIN
KURT SCHMUCKER
ANDRE WEINAND
JOHN M. VLISSIDES

MANNING

Greenwich
(74° w. long.)

®

The publisher offers discounts on this book when ordered in quantity.

For more information plcasc contact:

Special Sales Department
Manning Publications Co.

3 Lewis Street

Greenwich, CT 06830

or
73150.1431@compuscrve.com
Fax: (203) 661-9018

/“ Copyright © 1995 by Manning Publications Co.
All rights rescrved.

Design and Typesetting: Stephen Adams
Copy cditor: Margaret Marynowski

No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form or by any means, clectronic, mechani-
cal, photocopying, or otherwise, without prior written permission of the

publisher.

Recognizing the importance of preserving what has been written,
it is the policy of Manning Publications to have the books they
‘publish printed on acid-free paper, and we exert our best efforts
to that end.

Library of Congress Cataloging—in—Publication Data

Object-oriented application frameworks / Ted Lewis, editor.
p- cm.

Includes bibliographical references and index.

ISBN 1-884777-06-6

1. Object-oriented programming (Computer Science) 1. Lewis, T.
G. (Theodore Gyle), 1941-
QA76.64.0243 1995
005.1'1—dc20 94-48023

CIP

95 96 97 98 BB 10 9 8 7 6 5 4 3 2

Printed in the United States of America

Preface

One of the next major steps in object-oriented design and programming
is framework design and programming. Frameworks are being commer-
cialized by NeXT and Taligent, and to a lesser extent, by IBM, Microsoft,
SunSoft, Borland, and Hewlett Packard. I think that the introduction of
the Taligent products in 1995 will stimulate widespread interest in
frameworks: what they are, how they work, and how they compare with
one another.

This paperback tutorial/survey is designed to address the anticipated
surge of interest in what has previously been a little-understood technol-
ogy. I hope to do so in three parts: an introduction to the underlying
principles of object-oriented design, a comparative survey of frameworks
for personal computers and UNIX workstations, and an illustration of
the uses of frameworks. Part I should make the book appealing to the
beginner, and Parts I and III should appeal to the software project leader,
MIS manager, or advanced programmer. This is a professional book, not
a textbook.

What exactly is an object-oriented framework? It is an object-oriented
class hierarchy plus a built-in model of interaction which defines how the
objects derived from the class hierarchy interact with one another.

This rather simple definition belies the power of frameworks. In prac-
tical terms, the framework approach leverages capital-intensive software
investment through reuse, and provides a much higher-level application

vii

viii

programming interface, so that applications can be developed ten times
faster. It is the next giant step in the progression toward more powerful
desktop computers. Steve Jobs recognized the significance of object-ori-
ented frameworks when he called his new company NeX7 and his frame-
work-based operating system NeX7Step.

Frameworks are not new-fangled research exotica, but rather the
essential core of what is happening in software these days. The two most
glaring examples of the framework approach come from Taligent Inc. and
NeXT Inc. Both operating systems are based on the MACH kernel (or
other multithreading systems, such as OS/2 or Apple’s System 8.0), and
both are layered with object-oriented software services in the form of
object-oriented frameworks. The Taligent operating system makes more
extensive use of frameworks than any other system, except perhaps the
Apple Newton.

The purpose of the Taligent operating system is to win the battle of
the desktop in the next round of operating systems wars. Of course, the
players want to shift the balance of power to their own advantage as the
PC industry converts from a 16-bit to a 32/64-bit architecture based on
RISC processors such as PowerPC, DEC Alpha, and SuperSPARC. These
better-performing processors with radically different architecture make
existing PC operating systems obsolete. But what will replace them? This
is the 100-billion-dollar question.

I believe whatever the outcome of these wars, the object-oriented
framework concept will be at the core of the technology of the twenty-
first century. I hope this book helps you get started on your journey
toward understanding the subtleties of this new technology.

TED G. LEwWIS, PHD

Preface

PREFACE

PART I:

A GUIDE To OBJECT-ORIENTED DESIGN

ORIGINS OF THE SPECIES

1.1
1.2
1.3
1.4
1.5

Preview

After 25 Years, Why Now?

What Makes an Object an Object?
Polymorphism and All That Jazz
Inheritance Is the Key to Reuse
Summary of the Main Points
Further Reading

FRAMEWORK FUNDAMENTALS

2.1
2.2
23
24
25
2.6

Preview

Inheritance Relation = Class Hierarchy
Your First Class Hierarchy
Frameworks Defined

Iterator Interactions in Frameworks
MVC: The Mother of All Interactions
Summary of the Main Points

Further Reading

VISIT TO A SMALL FRAMEWORK

3.1
3.2
3.3

Preview

The Component Architecture
TableView

The TableView Approach

vii

© W

21
26
26

27
27
30
34
35
38
43
43

45
46
48
50

34
3.5
3.6
3.7
3.8

ViewBuilder Data Model Architecture
TableView Implementation

Dynamic Runtime Options Architecture
Table Builder Implementation

Example: DreamGrader

Further Reading

VISUAL PROGRAMMING WITH FRAMEWORKS

4.1
4.2
4.3
4.4

45
4.6

PART II:

Preview
What Is Objex?
The Objex System
Using the Petri Net Editor
Design and Implementation of
the Petri Net Editor
Experience with the Petri Net Editor
An Evaluation
Further Reading

OFF-THE-SHELF DESIGNS

MACAPP: FIRST COMMERCIALLY
SUCCESSFUL FRAMEWORK
Larry Rosenstein

5.1
5.2
5.3
5.4

REUSING MICROSOFT’S FOUNDATION CLASSES

Preview
Background
Design Evolution
Classes
Interactions

Further Reading

Wolfgang Pree

6.1
6.2
6.3
6.4

Preview
Features of the MFC Framework
A MFC-friendly Environment

MEC’s Cornerstones
Adaptation Support

51
55
58
62
66
69

70
71
76
87

89
97
105
106

111
111
112
115
117
136

137
137
139
139
145

6.5
6.6

Design Issues
Summary

Further Reading

ET++ A PORTABLE HOMOGENEOUS CLASS
LIBRARY AND APPLICATION FRAMEWORK
André Weinand & Gamma

7.1
72
7.3
7.4
7.3
7.6
7.7

7.8
7.9
7.10
7.11

INTERVIEWS: A FRAMEWORK FOR X-WINDOWS

Preview
From Toolbox to Application Framework
An Example of an ET++ Application
Architectural Overview
The Toolkit
Application Framework
High-Level Building Blocks
Object-Oriented Modeling
of System Dependencies
Runtime Object Inspection
ET++ Applications
Conclusions
Availability
Further Reading

Paul Calder

8.1
8.2

83
8.4
8.7
8.8

OBJECT FRAMEWORKS IN THE TALIGENT OS

Preview
InterViews History
Composition: Assembling

Predefined Components
Extension: Defining New Components
Implementing InterViews Graphics on X11
Conclusions: The InterViews Experience
Acknowledgments
Further Reading

Glenn Andert

9.1

Preview
What Is CommonPoint?

150
152
152

154
155
156
158
159
170
174

180
183
187
190
192
192

195
195

199
207
212
216
217
218

221
221

vi

9.3
9.4
9.5
9.6

PART lll:

UNIDRAW: A FRAMEWORK FOR BUILDING
DOMAIN-SPECIFIC GRAPHICAL EDITORS

Enabling Hardware Innovation

Example: SCSI Services Domain

Conclusion
Acknowledgment
References

APPLICATIONS OF FRAMEWORKS

John Vlissides

10.1
10.2
10.3
10.4
10.5

Preview

What Is a Drawing Framework?

Unidraw’s Design

Summary of Unidraw Classes
Applications

Summary

References

PROGRAPH CPX
Kurt Schmucker

111
11.2
113

Preview

What Is Prograph?
Prograph Environment
Prograph Framework
References

EriLOG

12.1
12.2
12.3
124
125

The Long and Winding Road
The Dark Side of Objects
The True Path to Knowledge
What Have We Learned?
Frameworks 2000

INDEX

225
228
233
234
234

239
240
241
261
263
288
290

291
292
305
318
331

332
333
335
335
336

339

PART

Every book must start somewhere, so we will start at the beginning, with

an overview of the history and origins of object-oriented programming
and frameworks. What are they, how did they come about, and why are
they so important? These, and other mysteries of the Universe, are cov-
ered in four adventure-packed episodes.

The advanced reader might want to skip Part I, especially if he or she
already knows the ins and outs of objects, polymorphism, inheritance,
class libraries, and Norwegian science. The rest of us can use these intro-
ductory chapters to brush up on some important ideas. For example,
Chapter 1 quickly takes us up to the contemporary software scene, where
programmers are making significant advances in productivity, pushing
rapid application development to the limit, and making more money
than ever. Chapter 1 is also an excellent place to find basic definition of
terms that will linger throughout the rest of the book. While technically
lightweight, this first foray into the object-oriented jungle will reward the
reader with an orthodontically correct view of the subject.

Chapter 2 gets to the heart of the matter by defining what a frame-
work is, and what it can do. This chapter’s stark simplicity will be much

appreciated by even the most dedicated nontechnical reader. In addition
to introducing the very important model of interaction called MVC
(Model-View-Controller), its clear writing, advanced thinking, and global
perspective will place you on the edge of your sofa.

Things get tougher in Chapters 3 and 4, because here is where we
start to get specific. First, Chapter 3 drags you through the design of a
small application framework. The Table framework is a reusable compo-
nent that creates and manages spreadsheet-like data. In addition to dis-
playing data in a two-dimensional format like Excel or Lotus 1-2-3, the
Table framework works as part of a larger framework (MacApp). This
illustrates the way programmers of the future will work: borrowing
instead of reinventing the software wheel.

Chapter 4 pushes these ideas a bit further, by overlaying a visual or
diagram-like programming system on top of a framework for the Macin-
tosh called Objex. This clever bit of programming magic encapsulates
both design and code for storage, GUI, 1/O, graphics, and MVC applica-
tions under the glossy cover of a point-and-click diagramming language
based on the mathematically elegant Petri Network. This chapter also
contains the first evidence to support the wild claims about programmer
productivity that we make in the first chapter.

Part 1 A Guide to Object-Oriented Design

CHAPTER

Preview

The object-oriented design and programming revolution is based on the
fundamental ideas of objects, classes, methods, messages, encapsulation,
inheritance, polymorphism, and dynamic binding. Some of these are new
words for old ideas, while others are names for new concepts in software
design. How did we get here from the old-fashioned procedural program-
ming heritage, and what do all of these new words mean? The following is
an illustrated guide to the new way of thinking about, designing, and
writing software.

The two great programming paradigms of the past three decades have
been procedure-orientation and object-orientation. The procedural para-
digm has served us well, but now it is time for something more powerful,
because machines and consumer expectations have grown in power and
sophistication. So, how do we deliver powerful software while sidestep-
ping the software crisis? The answer goes all the way back to 1967, to
Norway—not Japan, not Germany, and certainly not the USA.

In this chapter you will learn that object-orientation is a better way of
writing modular programs. The modules of an object-oriented program
encapsulate function, in the form of procedures, and state, in the form of
storage variables. This, combined with the generality and flexibility of a
programming trick called polymorphism, defines the object-oriented para-
digm. Oh, and then there are inheritance and dynamic binding. But then,
if we tell you what these are in the first page, you won’t buy the book!

1.1 After 25 Years, Why Now?

First, a warning to the reader. The word OOPis not a faux pas on the part
of the author, but rather an abbreviation of object-oriented programming.
Another frequently-used phrase in this book is object-oriented design,
abbreviated OOD.

Second warning. This chapter introduces OOP and OOD at the
most elementary level. If you are beyond the novice level, skip to the next
chapter, or if you are an expert OOP programmer and simply want to
read about frameworks, skip to the next part.

1.1.1 In the Beginning
OOP and OOD are at least two decades old, and the ideas have been

around for perhaps even longer. The fundamental idea of composing soft-
ware from a collection of modules called objects goes way back to the
dawning era of software design, even before personal computers. Even
before video games! In 1967, a new programming language called
Simula67 was invented for the purpose of writing simulation software.
But, rather than raise interest in simulations, it went unnoticed by just
about everyone except for a few leading-edge software academics. The
academics liked Simula67 because it showed how to cluster data around
procedures, thus simplifying software design, coding, and maintenance.

Data and procedure clustering prevented unauthorized access to data
in a Simula67 program. Only procedures that belonged to the same cluster
were allowed direct access to the cluster data. In a sense, Simula67 substi-
tuted function calls for data access everywhere it occurred in the program.

Clusters prevented indiscriminate data access. They set up software
fences, and access procedures were software gates for controlling access.
Thus was born the idea of encapsulation—one of the central ideas of
OOP, so important in fact, that we have used an enclosed box to represent
it, in Figure 1.1. Encapsulation is defined as any mechanism which sepa-
rates a program variable from code which changes its state. Furthermore,
encapsulation implies some form of access protection, a topic of great
interest to programming language designers in the 1970s. But, we are get-
ting ahead of our story.

Maybe because Simula67 was aimed at simulation programmers
instead of general application development programmers, or maybe
because it was invented in Scandinavia, it remained somewhat obscure
until the same ideas were rediscovered by the computer scientists at Xerox
Corporation’s think tank, Xerox PARC (PARC is an abbreviation of Palo
Alto Research Center). In the 1960s, 1970s, and early 1980s, Douglas
Englebart and others at PARC had fun inventing things like menus and
windows, the mouse, and computer-to-computer networks. One of their

Chapter 1 Origins of the Species

Access is restricted IS
. data go here
to special procedures

shown here as plugs /

e

/ Figure 1.1 Encapsulation is the
basis of OOP: All data are closed off
The basis of an object is from the outside world, and only spe-

the concept of encapsulation cial procedures called methods or
shown as a box with access member functions are allowed to
procedures shown as plugs directly access the encapsulated data

goals was to make computers so simple that even a child could program
them. To do this, they had to eliminate much of the complexity of tradi-
tional procedural programming, e.g., FORTRAN and Cobol had to go.

So, with the help of Allan Kay, Adele Goldberg, Larry Tesler, and oth-
ers, the ideas of OOP were collected together to create yet another lan-
guage, this time called Smalltalk-80, which incorporated the fundamentals
of OOP. And, once again, the world pretty much ignored it!

1.1.2 The Software Crisis Scare

Two things happened in the 1980s which reversed the poor fortunes
of OOP. First, computer hardware got faster and cheaper, and second,
software got bigger and much more expensive. In fact, software costs
soared to the point of creating a soffware crisis. The combination of these
two trends is dramatized in Figure 1.2, which shows that the cost per
hardware unit was plunging while the cost per software unit was soaring.
(The cost per statement of a large program is higher than the cost per
statement of a smaller program. So, Figure 1.2 is truly a comparison of the
per-unit costs of software versus hardware. On the other hand, the cost of
a single transistor decreases by a factor of about 4 every three years!).

Rapid advances in building faster and cheaper hardware were quickly
absorbed by software that made intensive use of graphical user interfaces
(GUlIs). GUI software made using computers so simple that a new breed
of applications was quickly invented. Drawing programs that processed

1.1 After 25 Years, Why Now?

/—-,

Transistors Lines ofcode _ —

Cost/Unit |

Time, years

Figure 1.2 Cost trends in the 1970s and 1980s. Unless something is
done about software, these trends will continue into the year 2000

pictures instead of text could run on inexpensive personal computers for
the first time. Ordinary people could build financial models by merely
pointing and clicking. These new toys looked suspiciously like the Xerox
PARC computers designed for the children of silicon valley families living
next to PARC. And guess what—the drawing programs were object-ori-
ented! (This idea just kept showing up in all the right places).

One person’s fool’s gold is another person’s treasure. The Xerox execu-
tives failed to appreciate the profit potential of cute little computers with
object-oriented GUIs that everyone could operate. Profit potential was
not over the head of Steve Jobs of Apple Computer, who saw clearly that
OOP held the long-sought-after answer to the big questions of computer
life. Apple bought the idea of OOP, along with most of the people who
worked for PARC! (Larry Tesler became head of Advanced Technologies,
and Allan Kay became what he always wanted to be—an icon). They
made a small computer at a selling price comparable to a car instead of a
house, and the Macintosh was born. The Macintosh changed the world in
more ways than one, but to the OOP world, it was a godsend.

1.1.3 The Plot Thickens

The plot thickens even more, because the second problem of the
1980s persisted: the soaring cost of software was put into orbit by GUI
programming. As it turns out, while Apple was busy making money from
Xerox PARC'’s ideas, Apple was also contributing to the software crisis.
GUI programming, networking, multiple-processor systems, and rising

Chapter 1 Origins of the Species

customer expectations were all driving programmers to the brink as soft-
ware became bigger, more complex, and more elaborate. What was a pro-
grammer to do?

The software engineers of the 1980s had a solution, but they did not
know how to implement it. Reuse is the so-called mega programming idea,
whereby software components are scavenged from old programs then
reused to construct new programs. Could the software crisis be held at
bay through reuse of software components? It seemed like a good idea,
but how? The reuse craze swept the land at about the same time rap music
overwhelmed MTV. Oh, and OOP was reborn because the OOP para-
digm is perfect for reuse. Not only did OOP properly encapsulate, but it
also recycled old code into new.

As they say, the rest is being rewritten as history. OOP solved a major
computing problem, making it possible to program faster and cheaper
hardware much faster and cheaper than using the old-fashioned proce-
dural style exemplified by FORTRAN, Cobol, Pascal, and C. The faster
hardware made programmers stop worrying about the overhead of OOP,
so they had time to worry about bigger and costlier application software.
But, the side benefits of OOP reuse put a stop to the growth in complex-
ity of the new GUI-intensive applications.

Apple Computer tried to promote OOP with MacApp, which was
the first widely used reusable OOP tool. But the idea was still slightly
ahead of its time. Then Apple Computer stumbled in its loyalty to
founder Jobs, so he took his OOP ideas to NeXT Inc., and NeXTStep
was born out of the OOP stew. Later, IBM thought that OOP was such a
good idea, it bought the languishing technology from Apple and together
they formed Taligent Inc., and another contender in the “OOP is for
reuse” contest joined the frenzy.

1.1.4 Back at the (AT&T) Ranch

Meanwhile, the procedural programming gang was not giving up
without a fight. Cute little computers were not going to rule the world, at
least not while there were UNIX hackers, C language diehards, and AT&T.
Smalltalk might be pure and perfect, Object Pascal elegant, and MacApp
simply too advanced, but C was the /ingua franca of real programmers. If it
was not an extension of C, how could it be more than a toy?

1.1 After 25 Years, Why Now?

Bjorne Stroustrup of AT&T Bell Labs offered a solution just in time
to rally the UNIX programmers who were as out of date in the new OOP
decade as disco. Stroustrup added object-oriented features to C, and gave
the concoction a clever name, C++. Actually, C++ source code was origi-
nally converted into ordinary C by a program called CFRONT which
AT&T gave away. The converted program was run through a C compiler
to get executable binary code. Therefore, C++ was not really pure and per-
fect. Even today, C++ is euphemistically called a hybrid OOR because a
clever programmer can use it to write either a procedural or object-ori-
ented program.

The invention of C++, Object Pascal, and other hybrids has weak-
ened the foundation of OOP, because encapsulation is not strictly
enforced in such upstart languages. Yet, these hybrids have been largely
responsible for the slow conversion of procedural programmers to the
OQOP style of programming. In the 1990s the story is largely one of tran-
sition from pure procedural to pure object-oriented programming.

So, by the late 1990s, OOP will have replaced top-down structured
programming as the software fad of the decade. Programmers will discard
their worn-out ideas based on procedural languages and adopt an OOP
language. If it were not so true, we would not have to say it, but OOP is
to the 1990s what structured programming was to the 1970s. And, OOP
is truly a paradigm shift because most of what you know about procedural
programming is harmful to understanding the OOP paradigm.

1.1.5 Giving Life to Meaning: OOP As a Paradigm

What exactly is the OOP paradigm? Table 1.1 summarizes the termi-
nology of both paradigms. In the new paradigm, procedures are no longer
the fundamental software building blocks, rather, objects are. Now embed-
ded in objects, procedures are activated only when a message is sent from
one object to another. Objects and messages are the stuff of software design.

The procedural paradigm must be discarded to clear the way for an
entirely different view of data, data types, and access to data. We will begin
to tell that story in the next section. In the remainder of this book, we will
illustrate these ideas and discuss how they are used to reverse the software
crisis, stave off spiraling development and maintenance costs, and save the
computer world. Well, maybe not, but at least you will become an expert

Chapter 1 Origins of the Species

