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Preface

This book is a substantially enlarged version of the Cambridge Tract
with the same title published in 1974. There are two major changes.

e The main text has been thoroughly revised in order to clarify the
exposition, and to bring the notation into line with current practice.
In the course of revision it was a pleasant surprise to find that the
original text remained a fairly good introduction to the subject, both
in outline and in detail. For this reason I have resisted the temptation
to reorganise the material in order to make the book rather more like a
standard textbook.

e Many Additional Results are now included at the end of each
chapter. These replace the rather patchy selection in the old version,
and they are intended to cover most of the major advances in the last
twenty years. It is hoped that the combination of the revised text and
the additional results will render the book of service to a wide range of
readers.

I am grateful to all those people who have helped by commenting upon
the old version and the draft of the new one. Particular thanks are due
to Peter Rowlinson, Tony Gardiner, Tan Anderson, Robin Wilson, and
Graham Brightwell. On the practical side, I thank Alison Adcock, who
prepared a TEX version of the old book, and David Tranah of Cambridge
University Press, who has been constant in his support.

Norman Biggs March 1993
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1

Introduction to algebraic graph theory

About the book

This book is concerned with the use of algebraic techniques in the study
of graphs. The aim is to translate properties of graphs into algebraic
properties and then, using the results and methods of algebra, to deduce
theorems about graphs.

It is fortunate that the basic terminology of graph theory has now be-
come part of the vocabulary of most people who have a serious interest
in studying mathematics at this level. A few basic definitions are gath-
ered together at the end of this chapter for the sake of convenience and
standardization. Brief explanations of other graph-theoretical terms are
included as they are needed. A small number of concepts from matrix
theory, permutation-group theory, and other areas of mathematics, are
used, and these are also accompanied by a brief explanation.

The literature of algebraic graph theory itself has grown enormously
since 1974, when the original version of this book was published. Liter-
ally thousands of research papers have appeared, and the most relevant
ones are cited here, both in the main text and in the Additional Re-
sults at the end of each chapter. But no attempt has been made to
provide a complete bibliography, partly because there are now several
books dealing with aspects of this subject. In particular there are two
books which contain massive quantities of information, and on which it
is convenient to rely for ‘amplification and exemplification’ of the main
results discussed here.
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These are:

Spectra of Graphs: D.M. Cvetkovi¢, M. Doob, and H. Sachs, Academic
Press (New York) 1980.

Distance-Regular Graphs: A.E. Brouwer, A.M. Cohen, and A. Neumaier,
Springer-Verlag (Berlin) 1989.

References to these two books are given in the form [CvDS, p. 777, and
[BCN, p. 888|.

C.D. Godsil’s recent book Algebraic Combinatorics (Chapman and
Hall, 1993) arrived too late to be quoted as reference. It is in many
ways complementary to this book, since it covers several of the same
topics from a different point of view. Finally, the long-awaited Handbook
of Combinatorics will contain authoritative accounts of many subjects
discussed in these pages.

Outline of the book

The book is in three parts, each divided into a number of short chap-
ters. The first part deals with the applications of linear algebra and
matrix theory to the study of graphs. We begin by introducing the ad-
jacency matrix of a graph; this matrix completely determines the graph,
and its spectral properties are shown to be related to properties of the
graph. For example, if a graph is regular, then the eigenvalues of its
adjacency matrix are bounded in absolute value by the degree of the
graph. In the case of a line graph, there is a strong lower bound for the
eigenvalues. Another matrix which completely describes a graph is the
incidence matrix of the graph. This matrix represents a linear mapping
which determines the homology of the graph. The problem of choosing
a basis for the homology of a graph is just that of finding a fundamental
system of cycles, and this problem is solved by using a spanning tree.
At the same time we study cuts in the graph. These ideas are then
applied to the systematic solution of network equations, a topic which
supplied the stimulus for the original theoretical development. We then
investigate formulae for the number of spanning trees in a graph, and
results which are derived from the expansion of determinants. These
expansions illuminate the relationship between a graph and the charac-
teristic polynomial of its adjacency matrix. The first part ends with a
discussion of how spectral techniques can be used in problems involving
partitions of the vertex-set, such as the vertex-colouring problem.

The second part of the book deals with the colouring problem from a
different point of view. The algebraic technique for counting the colour-
ings of a graph is founded on a polynomial known as the chromatic
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polynomial. We first discuss some simple ways of calculating this poly-
nomial, and show how these can be applied in several important cases.
Many important properties of the chromatic polynomial of a graph stem
from its connection with the family of subgraphs of the graph, and we
show how the chromatic polynomial can be expanded in terms of sub-
graphs. From the first (additive) expansion another (multiplicative)
expansion can be derived, and the latter depends upon a very restricted
class of subgraphs. This leads to efficient methods for approximating
the chromatic polynomials of large graphs. A completely different kind
of expansion relates the chromatic polynomial to the spanning trees of a
graph; this expansion has several remarkable features and leads to new
ways of looking at the colouring problems, and some new properties of
chromatic polynomials.

The third part of the book is concerned with symmetry and regularity
properties. A symmetry property of a graph is related to the existence
of automorphisms — that is, permutations of the vertices which pre-
serve adjacency. A regularity property is defined in purely numerical
terms. Consequently, symmetry properties induce regularity properties,
but the converse is not necessarily true. We first study the elementary
properties of automorphisms, and explain the connection between the
automorphisms of a graph and the eigenvalues of its adjacency matrix.
We then introduce a hierarchy of symmetry conditions which can be
imposed on a graph, and proceed to investigate their consequences. The
condition that all vertices be alike (under the action of the group of auto-
morphisms) turns out to be rather a weak one, but a slight strengthening
of it leads to highly non-trivial conclusions. In fact, under certain condi-
tions, there is an absolute bound to the level of symmetry which a graph
can possess. A strong symmetry property, called distance-transitivity,
and the consequent regularity property, called distance-regularity, are
then introduced. We return to the methods of linear algebra to derive
numerical constraints upon the existence of graphs with these properties.
Finally, these constraints are applied to the problem of finding minimal
regular graphs whose degree and girth are given.

Basic definitions and notation

Formally, a general graph I' consists of three things: a set VT, a set ET,
and an incidence relation, that is, a subset of VI’ x ET". An element
of VI is called a vertez, an element of ET is called an edge, and the
incidence relation is required to be such that an edge is incident with
either one vertex (in which case it is a loop) or two vertices. If every
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edge is incident with two vertices, and no two edges are incident with
the same pair of vertices, then we say that I' is a strict graph or briefly,
a graph. In this case, ET can be regarded as a subset of the set of
unordered pairs of vertices. We shall deal mainly with graphs (that is,
strict graphs), except in Part Two, where it is sometimes essential to
consider general graphs.

If v and w are vertices of a graph I', and e = {v,w} is an edge of T,
then we say that e joins v and w, and that v and w are the ends of e.
The number of edges of which v is an end is called the degree of v. A
subgraph of T is constructed by taking a subset S of ET together with
all vertices incident in I' with some edge belonging to S. An induced
subgraph of T" is obtained by taking a subset U of VT together with
all edges which are incident in I' only with vertices belonging to U. In
both cases the incidence relation in the subgraph is inherited from the
incidence relation in I'. We shall use the notation (S)r, (U)r for these
subgraphs, and usually, when the context is clear, the subscript I" will
be omitted.



PART ONE

Linear algebra in graph theory
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The spectrum of a graph

We begin by defining a matrix which will play an important role in many
parts of this book. Suppose that I' is a graph whose vertex-set VI is
the set {v1,v2,...,v,}, and consider ET as a set of unordered pairs of
elements of VI'. If {v;,v;} is in ET, then we say that v; and v; are
adjacent.

Definition 2.1 The adjacency matriz of I' is the n X n matrix A =
A(I') whose entries a;; are given by
0 — 1, if v; and v; are adjacent;
” 0, otherwise.

For the sake of definiteness we consider A as a matrix over the complex
field. Of course, it follows directly from the definition that A is a real
symmetric matrix, and that the trace of A is zero. Since the rows and
columns of A correspond to an arbitrary labelling of the vertices of
I', it is clear that we shall be interested primarily in those properties
of the adjacency matrix which are invariant under permutations of the
rows and columns. Foremost among such properties are the spectral
properties of A.

Suppose that X is an eigenvalue of A. Then, since A is real and sym-
metric, it follows that A is real, and the multiplicity of A as a root of
the equation det(AI — A) = 0 is equal to the dimension of the space of
eigenvectors corresponding to A.
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Definition 2.2 The spectrum of a graph I is the set of numbers which
are eigenvalues of A(I"), together with their multiplicities. If the distinct
eigenvalues of A(T") are \g > A; > ... > As_;, and their multiplicities

are m(Xg),m(A1),...,m(As_1), then we shall write
Ao A As—1 )
Specl’ = .
pec (m(/\o) m(A) ... m(As—1)

For example, the complete graph K, is the graph with n vertices in
which each distinct pair are adjacent. Thus the graph K4 has adjacency
matrix
1 1
0 1
10
1 11 0

and an easy calculation shows that the spectrum of Ky is

Spec K4 = (f _,31)

We shall usually refer to the eigenvalues of A = A(T") as the eigenval-
ues of I'. Also, the characteristic polynomial det(A\I — A) will be referred
to as the characteristic polynomial of ", and denoted by x(T'; A). Let us
suppose that the characteristic polynomial of I" is

XA = A"+ A" A" 2 43X 3 4+ L 4o,

.
- e

A =

In this form we know that —¢; is the sum of the zeros, that is, the sum
of the eigenvalues. This is also the trace of A which, as we have already
noted, is zero. Thus ¢; = 0. More generally, it is proved in the theory
of matrices that all the coefficients can be expressed in terms of the
principal minors of A, where a principal minor is the determinant of a
submatrix obtained by taking a subset of the rows and the same subset
of the columns. This leads to the following simple result.

Proposition 2.3  The coefficients of the characteristic polynomial of
a graph T satisfy:

(1) 1 = 0;

(2) —co is the number of edges of I';

(3) —c3 1s twice the number of triangles in T.

Proof For each ¢ € {1,2,...,n}, the number (—1)%c; is the sum of
those principal minors of A which have ¢ rows and columns. So we can
argue as follows.

(1) Since the diagonal elements of A are all zero, ¢; = 0.

(2) A principal minor with two rows and columns, and which has a
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non-zero entry, must be of the form

0 1

1 0}
There is one such minor for each pair of adjacent vertices of I', and each
has value —1. Hence (—1)2c, = —|ET|, giving the result.

(3) There are essentially three possibilities for non-trivial principal
minors with three rows and columns:

01 0 0 1 1 0 1 1
1 0 0f, 1 0 0f, 1 0 1},
0 0 O 1 0 0 1 10

and, of these, the only non-zero one is the last (whose value is 2). This
principal minor corresponds to three mutually adjacent vertices in I,
and so we have the required description of c3. O

These simple results indicate that the characteristic polynomial of a
graph is an object of the kind we study in algebraic graph theory: it is
an algebraic construction which contains graphical information. Propo-
sition 2.3 is just a pointer, and we shall obtain a more comprehensive
result on the coefficients of the characteristic polynomial in Chapter 7.

Suppose A is the adjacency matrix of a graph I'. Then the set of
polynomials in A, with complex coefficients, forms an algebra under
the usual matrix operations. This algebra has finite dimension as a
complex vector space. Indeed, the Cayley-Hamilton theorem asserts
that A satisfies its own characteristic equation, so the dimension is at
most n, the number of vertices in I'.

Definition 2.4 The adjacency algebra of a graph I is the algebra of
polynomials in the adjacency matrix A = A(I'). We shall denote the
adjacency algebra of I by A(T).

Since every element of the adjacency algebra is a linear combination
of powers of A, we can obtain results about A(T") from a study of these
powers. We define a walk of length [ in T, from v; to vj, to be a finite
sequence of vertices of T,

Vi = UQ, Uy ey W = Vj,

such that u;— | and u, are adjacent for 1 <t < [.

Lemma 2.5  The number of walks of length | in T, from v; to v;, is
the entry in position (i,j) of the matriz Al.

Proof The result is true for [ = 0 (since A° = I) and for [ = 1 (since

A' = A is the adjacency matrix). Suppose that the result is true for
Il = L. The set of walks of length L + 1 from v; to v; is in bijective
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correspondence with the set of walks of length L from v; to vertices vp
adjacent to v;. Thus the number of such walks is

n

Z (AE)n = Z(AL)ihahj = (AF*1),..

{vn,v;}€ET h=1
It follows that the number of walks of length L + 1 joining v; to v; is
(AL*1),;. The general result follows by induction. O

A graph is said to be connected if each pair of vertices is joined by
a walk. The number of edges traversed in the shortest walk joining v;
and v; is called the distance in I' between v; and v; and is denoted by
9(vi,vj). The maximum value of the distance function in a connected
graph I is called the diameter of T'.

Proposition 2.6 Let I' be a connected graph with adjacency algebra
A(T') and diameter d. Then the dimension of A(T') is at least d + 1.

Proof Let z and y be vertices of I' such that d(z,y) = d, and suppose
that
r=wy,Wyy...,Wqg =Y

is a walk of length d. Then, for each i € {1,2,...,d}, there is at least one

walk of length i, but no shorter walk, joining wg to w;. Consequently,

A’ has a non-zero entry in a position where the corresponding entries of

I,A,A% ..., A" ! are zero. It follows that A® is not linearly dependent

on {ILA,...,A" '}, and that {I,A,..., A%} is a linearly independent

set in A(T"). Since this set has d + 1 members, the proposition is proved.
(]

There is a close connection between the adjacency algebra and the
spectrum of I'. If the adjacency matrix has s distinct eigenvalues then,
since it is a real symmetric matrix, its minimum polynomial (the monic
polynomial of least degree which annihilates it) has degree s. Conse-
quently the dimension of the adjacency algebra is equal to s. Thus we
have the following bound for the number of distinct eigenvalues.

Corollary 2.7 A connected graph with diameter d has at least d + 1
distinct eigenvalues. O

One of the major topics of the last part of this book is the study of
a class of ‘highly regular’ connected graphs which have the minimum
number d + 1 of distinct eigenvalues. In the following chapters we shall
encounter several other examples of the link between structural regular-
ity and the spectrum.
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Notation The eigenvalues of a graph may be be listed in two ways: in
strictly decreasing order of the distinct values, as in Definition 2.2, or in
weakly decreasing order (with repeated values) Ao > A1 > ... > A1,
where n = |VT'|. We shall use either method, as appropriate.

Additional Results

2a A reduction formula for x  Suppose I' is a graph with a vertex
v; of degree 1, and let vy be the vertex adjacent to v;. Let I'y be
the induced subgraph obtained by removing v;, and I';2 the induced
subgraph obtained by removing {v;,v2}. Then

X(T5A) = Ax(T15A) — x(T12; A).
This formula can be used to calculate the characteristic polynomial of

any tree, because a tree always has a vertex of degree 1. A more general
reduction formula was found by Rowlinson (1987).

2b The characteristic polynomial of a path  Let P, be the path graph
with vertex-set {vi,ve,...,v,} and edges {vi,vix1} (1 <i<n-—1). For
n > 3 we have

X(Pn; ’\) = ’\X(Pn—l; /\) - X(Pn—Z;A)‘

Hence x(Pp;A) = Un(A\/2), where U,, denotes the Chebyshev polynomial
of the second kind.

2c The spectrum of a bipartite graph A graph is bipartite if its vertex-
set can be partitioned into two parts Vi and V» such that each edge has
one vertex in V; and one vertex in V5. If we order the vertices so that
those in V) come first, then the adjacency matrix of a bipartite graph
takes the form

A= [ 0 B] .

B 0
If x is an eigenvector corresponding to the eigenvalue A, and X is obtained
from x by changing the signs of the entries corresponding to vertices in
Va, then X is an eigenvector corresponding to the eigenvalue —\. It
follows that the spectrum of a bipartite graph is symmetric with respect

to 0, a result originally obtained by Coulson and Rushbrooke (1940) in
the context of theoretical chemistry.

2d The derwative of x For i = 1,2,...,n let I'; denote the induced
subgraph (VI \ v;). Then

X' (T3 0) =" x(Tis A).
i=1



