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Abstract Syntheses and applications of interlocked polymers, polyrotaxanes, and polyca-
tenanes, including corresponding oligomers are reviewed with emphasis on (i) synthesis
of interlocked polymers consisting of interlocked structures as the monomer-linking
units (genuine “topological” polymers), and (ii) application of the interlocked polymers
in both bulk and molecular levels. Further, the review also refers to a few important poly-
rotaxanes and polycatenane which are still unknown despite many synthetic challenges
attempted so far. The review mainly summarizes the recent progress in the chemistry of
polyrotaxanes and polycatenanes during this decade, in terms of kind of ring systems.

Keywords Poly(oligo)rotaxane poly(oligo)catenane - Synthesis - Application - Interlocked
polymer

1
Introduction—Chemistry of Polyrotaxanes and Polycatenanes:
An Overview

Mechanical bonding characteristic of interlocked molecules such as rotax-
anes and catenanes assures high freedom and mobility of the whole mole-
cule or its components, as predicted from their unique structures. Mean-
while, complete separation of their components to each other requires ener-
gy as high as that for covalent bond breaking. Therefore, the so-called “topo-
logical bond” between the components can be regarded as a “soft but strong
bond” in comparison with the typical covalent bond. The interlocked mole-
cules having such characteristic features are expected to have special or ex-
traordinary physical and chemical properties.

The chemistry of rotaxanes and catenanes has progressed well in accor-
dance with the interest in their unique structures and the expectation to de-
velopment as the parts of molecular machines or molecular device, whereas
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that of polymers comprising these structures as the key repeating units, i.e.,
interlocked polymers, has progressed less well. The chemistry of [2]rotax-
anes and [2]catenanes has recently stressed their applications by utilizing
the vast amount of studies as their background, while both synthesis and ap-
plication of the interlocked polymers have been studied simultaneously.

Although characteristic properties in mechanical and/or rheological as-
pects have been assigned to the interlocked polymers in the bulk state, the
ring size of the wheel component included seems to exert a serious influ-
ence, as well as that by the freedom of the component. As a way of looking
at the polymer properties, the effect of the entangled polymer chain plays an
important role. That is, it can be considered that an elastic property exists
based on the interlocked polymer chains as highly interpenetrated ones
which may be associated with the properties of rubber and interpenetrating
polymers, when a big wheel is used. Meanwhile, when a wheel component is
connected with the chain polymers, bonding between the wheel component
and the polymer chain results in producing the crosslinked points that can
move on the chain. Such a type of “topological crosslinking” can provide
special mobility to the polymer, because it is distinguished from both physi-
cal and chemical crosslinkings with little mobility.

As mentioned above, studies from the viewpoint of material science and
technology of these new type of polymers are progressing, particularly since
the start of the twenty-first century, and various unique properties are ex-
pected for the polymers characterized by the interlocked structures.

There are reviews including two comprehensive articles of Gibson [1] and
Stoddart [2] on the polyrotaxanes and polycatenanes [3-12], in addition to a
lot of review articles and books on the rotaxanes and catenanes [13-28].
Short reviews on the applications of polyrotaxanes are also reported [29-
38].

11
Structures of Interlocked Polymers

Scheme 1 illustrates the simplest structures of rotaxane, catenane, and knot
besides polyrotaxane and polycatenane. From the fact that the main chain-
type polyrotaxane at the left side is the only interlocked polymer synthe-
sized so far among the three polymers shown at the bottom of the scheme,
progress in synthesis of interlocked polymers appears to be sluggish judging
from the level of activity in synthetic polymer chemistry in the world.

More detailed general structures of the representative polyrotaxanes and
polycatenanes are shown in Scheme 2. Polyrotaxanes can be categorized into
two types: one is the polyrotaxanes consisting of the main chains of covalent
type as shown in the top four examples (A-D), while the other involves the
polyrotaxanes of which monomer linking units are constructed by the ro-
taxane structure as shown in the following two structures (E, F). The essen-
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&= &

[2]Catenane 3;Knot

polyrotaxane poly[2]rotaxane [n]catenane
(polycatenane)

Scheme 1

tial difference in main chain structure between the two types of polyrotax-
anes should cause large differences in their physical or mechanical proper-
ties. The former polyrotaxanes (A-D) are further divided into main chain-
type (A, B) and side chain-type (C, D). As mentioned above, poly[2]rotaxane
(E) as one of the latter is an unknown polymer which has still been encour-
aging the many synthetic challenges made so far aside. Meanwhile, synthesis
of the neighboring poly[3]rotaxane (F) has very recently been achieved.
Genuine polyrotaxane seems to be one of the polyrotaxanes like the former
“topological polyrotaxanes”, which may reflect their truly unique structures
to their properties.

In addition to three typical structures of poly[2]catenanes (G-I), polyca-
tenane (i.e., [n]catenane) of which the structure is comprised only of wheel
components is simply interlinked like a “chain” (J). The polycatenane is one
of the most difficult goals in the synthesis of unknown interlocked polymers,
like poly[2]rotaxane as already pointed out, although it will be accomplished
in the near future because so much effort has been made by synthetic che-
mists, and this will be continued.

1.2
Wheel Component

It is vital that simple and cheap synthesis of interlocked polymers is
achieved in order to make progress in the chemistry of polyrotaxanes and
polycatenanes. Since bulk property is essential in polymer science, difficulty
in synthesis of interlocked polymers should be avoided, this being different
from the case of molecular materials such as molecular devices functioning
at a molecular level. Both polyrotaxanes and polycatenanes as well as both
rotaxanes and catenanes are becoming easy to synthesize with the progress
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of supramolecular chemistry. Even with such fortunate circumstances in re-
cent times, the biggest problems to be overcome would be the absence of ap-
propriate wheel components. As shown in Scheme 3, there are several exam-
ples of wheel components (K-S) which are used in the interlocked polymers
among those used in rotaxanes and catenanes. Although these macrocycles
are wheels good enough to be interactable with the axle components with
each particular interaction, most of them suffer from synthetic difficulty
and/or high cost. Creation or development of cheap or easily prepared wheel
components is strongly desired.

1.3
Synthesis of Interlocked Polymers

Synthesis of polyrotaxanes and polycatenanes is performed basically by us-
ing or applying the synthetic methods for rotaxanes and catenanes.

A. Threading - Endo-Capping

c,,)+z/

B. Clipping D. Enterting (Slipping)

Scheme 4

Scheme 4 summarizes the representative synthetic methods of [2]rotaxanes
[17, 21]. Methods A and B are characterized by the kinetically controlled
process as the final step to the rotaxane. In particular, method A is the gen-
eral and most straightforward synthesis: i.e., end-capping of the axle termi-
nal with a bulky group after threading of the axle into the wheel. Most poly-
rotaxanes are prepared according to this methodology. On the other hand,
methods C and D at the left side undergo the thermodynamically controlled
process at the equilibrium in the last step of the process. Since the proce-
dures in the two synthetic methods completely differ from each other, the
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control of the synthetic reaction is also different. The thermodynamic con-
trol process has recently attracted much attention from the viewpoint of ad-
vantages, not only in yield but in also milder reaction in accordance with
progress in supramolecular chemistry.

The above-mentioned “directed” synthesis always requires a certain
strong interaction between the wheel and the axle before making the inter-
locked bond in any method. As for the example of the wheels depicted in
Scheme 3, hydrophobic interaction is the major attractive interaction in the
cases of cucurbituril and cyclodextrin (A, B), thereby resulting in limitation
as the wheel-axle complex formation should be done in water. In particular,
it is an additional difficulty to employ the complexation in strongly acidic
conditions owing to the extremely low solubility of cucurbituril.

In the case of crown ethers (M, N) which should have the number of ring
members more than ca. 24, since the major attractive interaction is the hy-
drogen bonding with secondary ammonium ion and/or ion-dipole interac-
tion with cationic species, the complexation should be carried out under
conditions capable of encouraging such interactions. Coordination bonding
to metal is the attractive interaction in the case of oligoether-macrocycles
having a bidentate nitrogen ligand moiety (F). The coordination is quite sta-
ble with strong “bonding” and therefore the yield of rotaxane is usually
high. Paraquat-type cationic host as the wheel component (G) requires axles
having highly electron-donating property like aromatic ethers and tetrathia-
fulvalenes, where cation-z and/or CT interactions are the major attractive
interactions. Macrocycles consisting of amide functionalities (J) make the
corresponding interlocked structures with the assistance of hydrogen bond-
ing interaction between the amide groups and the axle components. In this
case, the final step reaction to rotaxane need not disturb the hydrogen bond-
ing.

Synthesis of catenane is much more difficult than that of rotaxanes be-
cause it always depends on the final step of a ring-closing reaction with gen-
erally low efficiency. Namely, macrocycle formation at the final stage under-
goes an unfavorable process with regard to entropy, and therefore the yield
of catenane is usually low even by a “directed” synthesis, other than those
utilizing metal-templated synthesis [16, 23, 27]. Although high yield synthe-
sis is sometimes accessible to [2] and [3]catenanes, no polymer [n]catenane
listed in Scheme 2 (J) is reported at all. The maximum number of n is 5 at
present time. In contrast to polycatenane, poly[2]catenane can be easily pre-
pared by polymerization or copolymerization of [2]catenane with polymer-
izable groups pre-synthesized through an efficient method.

This review mainly summarizes recent progress in the chemistry of inter-
locked polymers including oligomers (consisting of more than three compo-
nents) in this decade. In particular, the review first describes the “genuine”
interlocked polymers of which repeating units are linked through the inter-
locked structures—they can be called “topological polymers”—and also em-



