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Preface

What forces drive atoms and molecules to bind, to adsorb, to dissolve, to per-
meate membranes, to undergo chemical reactions, and to undergo conforma-
tional changes? This is a textbook on statistical thermodynamics. It describes
the forces that govern molecular behavior. Statistical thermodynamics uses
physical models, mathematical approximations, and empirical laws that are
rooted in the language of entropy, distribution function, energy, heat capacity,
free energy, and partition function, to predict the behaviors of molecules in
physical, chemical, and biological systems.

This text is intended for graduate students and advanced undergraduates in
physical chemistry, biochemistry, bioengineering, polymer and materials sci-
ence, pharmaceutical chemistry, chemical engineering, and environmental sci-
ence.

We had three goals in mind as we wrote this book. First, we tried to make ex-
tensive connections with experiments and familiar contexts, to show the prac-
tical importance of this subject. We have included many applications in biol-
ogy and polymer science, in addition to applications in more traditional areas
of chemistry and physics. Second, we tried to make this book accessible to
students with a variety of backgrounds. So, for example, we have included
material on probabilities, approximations, partial derivatives, vector calculus,
and on the historical basis of thermodynamics. Third, we strove to find a van-
tage point from which the concepts are revealed in their simplest and most
comprehensible forms. For this reason, we follow the axiomatic approach to
thermodynamics developed by HB Callen, rather than the more traditional in-
ductive approach; and the Maximum Entropy approach of Jaynes, Skilling and
Livesay, in preference to the Gibbs ensemble method. We have drawn from
many excellent texts, particularly those by Callen, Hill, Atkins, Chandler, Kubo,
Kittel and Kroemer, Carrington, Adkins, Weiss, Doi, Flory, and Berry, Rice and
Ross.

Our focus here is on molecular driving forces, which overlaps with—but
is not identical to—the subject of thermodynamics. While the power of ther-
modynamics is its generality, the power of statistical thermodynamics is the
insights it gives into microscopic interactions through the enterprise of model-
making. A central theme of this book is that making models, even very simple
ones, is a route to insight and to understanding how molecules work. A good
theory, no matter how complex its mathematics, is usually rooted in some very
simple physical idea.

Models are mental toys to guide our thinking. The most important ingredi-
ents in a good model are predictive power and insight into the causes of the
predicted behavior. The more rigorous a model, the less room for ambiguity.
But models don’t need to be complicated to be useful. Many of the key insights
in statistical mechanics have come from simplifications that may seem unreal-
istic at first glance: particles represented as perfect spheres with atomic detail
left out, neglecting the presence of other particles, using crystal-like lattices
of particles in liquids and polymers, and modelling polymer chains as random
flights, etc. To borrow a quote, statistical thermodynamics has a history of what
might be called the unreasonable effectiveness of unrealistic simplifications. Per-
haps the classic example is the two-dimensional Ising model of magnets as two
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types of arrows, up spins or down spins, on square lattices. Lars Onsager’s
famous solution to this highly simplified model was a major contribution to
the modern revolution in our understanding of phase transitions and critical
phenomena.

We begin with entropy. Chapter 1 gives the underpinnings in terms of
probabilities and combinatorics. Simple models are used in chapters 2 and 3
to show how entropy is a driving force. This motivates more detailed treat-
ments throughout the text illustrating the Second Law of thermodynamics
and the concept of equilibrium. Chapters 1, 4, and 5 lay out the mathemat-
ical foundations—probability, approximations, multivariate calculus—that are
needed for the following chapters.

These threads culminate in chapter 6, which defines the entropy and gives
the Boltzmann distribution law, the lynch-pin of statistical thermodynamics.
The key expressions, S = kInW and S = —k > p;Inp;, are often regarded
in physical chemistry texts as given, but here we provide optional material
in which we derive these expressions from a principle of fair apportionment,
based on treatments by Jaynes, Skilling, Livesay, and others.

The principles of thermodynamics are described in chapters 7--9. The sta-
tistical mechanics of simple systems follows in chapters 10 and 11. While
temperature and heat capacity are often regarded as needing no explanation
(perhaps because they are so readily measured), our chapter 12 uses simple
models to shed light on the physical basis of those properties. Chapter 13
applies the principles of statistical thermodynamics to chemical equilibria.

Chapters 14—16 develop simple models of liquids and solutions. We use
lattice models here, rather than ideal solution theories, because such mod-
els give more microscopic insight into real molecules and into the solvation
processes that are central to computational chemistry, biology, and materials
science. For example, theories of mixtures often begin from the premise that
Raoult’s and Henry’s laws are experimental facts. Our approach, instead, is
to show why molecules are driven to obey these laws. An equally important
reason for introducing lattice models here is as background. Lattice models
are standard tools for treating complex systems: phase transitions and criti-
cal phenomena in chapters 25 and 26, and polymer conformations in chapters
30-33.

We explore the dynamic processes of diffusion, transport, and physical and
chemical kinetics in chapters 18 and 19 through the random-flight model, the
Langevin model, Onsager relations, time correlation functions and transition-
state theory.

We treat electrostatics in chapters 20—23. Our treatment is more extensive
than in other physical chemistry texts because of the importance, in our view,
of electrostatics in understanding the structures of proteins, nucleic acids, mi-
celles and membranes; for predicting protein- and nucleic acid-ligand inter-
actions and the behaviors of ion channels; as well as for the classical areas
of electrochemistry and colloid science. We develop the Nernst and Poisson-
-Boltzmann equations and the Born model, modern workhorses of quantitative
biology. Chapter 24 describes intermolecular forces.

We describe simple models of complex systems, including polymers, col-
loids, surfaces, and catalysts. Chapters 25 and 26 focus on cooperativity:
phase equilibria, solubilities, critical phenomena, and conformational transi-



tions, described through mean-field theories, the Ising model, helix-coil model,
and Landau theory. Chapters 27 and 28 describe binding polynomials, essen-
tial to modern pharmaceutical science. Chapters 29 and 30 describe water,
the hydrophobic effect, and ion solvation. And chapters 31--33 focus on the
conformations of polymers and biomolecules that give rise to the elasticity of
rubber, the viscoelasticities of solutions, the immiscibilities of polymers, rep-
tational motion, and the folding of proteins and RNA molecules.
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