MALEIC ANHYDRIDE

B. C. Trivedi and B. M. Culbertson

MALEIC ANHYDRIDE

B. C. Trivedi

and

B. M. Culbertson

Ashland Chemical Company Dublin, Ohio

Library of Congress Cataloging in Publication Data

Trivedi, B. C.

Maleic anhydride.

Includes bibliographies and index.

1. Maleic anhydride. I. Culbertson, B. M., 1929-

. II. Title.

QD305.A2T74 1982

547 .037

82-9126

ISBN 0-306-40929-1

AACR2

1982 Plenum Press, New York
 A Division of Plenum Publishing Corporation
 233 Spring Street, New York, N.Y. 10013

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

Printed in the United States of America

PREFACE

In just fifty years maleic anhydride has evolved from a little-known, little-used compound to a truly high-volume chemical. Between 1940 and 1978 its production has increased seventy-fivefold. The fact that more than half of all maleic anhydride produced in the United States is consumed in a single application tends to obscure the great versatility of this intermediate. Because this relatively simple molecule plays a key role in numerous chemical reactions, it finds applications in such diverse areas as adhesives, elastomers, plastics, coatings, fibers, lubricants, fuels, detergents, agricultural chemicals, pharmaceuticals, and surfactants, to name only a few.

The chemistry of the maleic anhydride molecule seems to be uniquely suited to illuminate many facets of organic chemistry. In addition to its important role in functional-group chemistry, study of maleic anhydride lends itself to analysis of such diverse processes as ionic, radical, and cycloaddition reactions. Similarly, polymer chemistry is exemplified in a variety of ways by reactions of maleic anhydride, including its role in charge-transfer, addition, and condensation polymerizations.

Although some aspects of the maleic anhydride molecule are well understood, others need extensive research and elucidation. Further, the development over the last twenty years of new processes utilizing maleic anhydride, such as photochemistry, homopolymerization, and charge-transfer polymerization, suggests that the potential of this intermediate is far from exhausted. Herein, we believe, lies a challenge for chemists and technologists.

The existence of extensive archival, trade, and patent literature and a large market notwithstanding, no comprehensive, hardbound, technical reference work on maleic anhydride has so far been available. This book ettempts to correct that situation and provides, for the first time, a single reference source of scientific background information and state-of-the-art technical data on this unique chemical. *Maleic Anhydride* collates the interesting chemistry of maleic anhydride that was until now scattered over 30,000 references, including patents, giving equal emphasis to fundamental and applied chemistry, while at the same time directing the reader's attention to sources for reaction recipes.

In keeping with the authors' intent to furnish chemists, chemical engineers, and others interested in maleic anhydride with an accurate and practical reference source, the book provides not only a review and discussion of key raw materials, production procedures, and the economics of maleic anhydride, but also delves into the multifaceted chemistry and polymerization

reactions of the monomer. Uses, both known and potential, are surveyed and discussed, and attention is also paid to health and safety factors.

It is the authors' hope that the breadth of the material and the thoroughness of presentation will make *Maleic Anhydride* of value to both technologist and scientist as well as to those concerned with the production and marketing of the raw material and its derivatives.

Columbus, Ohio 1981 B. C. Trivedi

B. M. Culbertson

ACKNOWLEDGMENTS

In spite of its often overwhelming aspect, the preparation of this book has been a labor of love for us. However, it could not have come to fruition without the help and support of a number of people. We consider it a privilege to be able to express our sincere gratitude to all who made this work possible. If we cannot thank each person individually, it is because of space limitation rather than an omission on the authors' part.

We would like to thank the management of Ashland Chemical Company for providing the opportunity and the help necessary to make this book materialize. We are indebted to Jack McVey, Fred Brothers, James Lewis, and James Idol, Jr., for supporting this work. Special thanks are due to Herbert Fineberg, who helped the authors nurture this book from its conception. Difficult to fully express in words is our gratitude to Robert Grimm and Frank Chappell. Their concern, care, and understanding have made the project worthwhile.

Our special thanks are due to the following people who helped us proofread the manuscript at various stages: R. Grimm, Frank Chappell, Robert Small (presently at Ciba-Geigy), Steve Reiter (presently at Conoco) Dace Grote, Kenneth Barnett, Herbert Fineberg, James Idol, Jr., and J. Kyung.

Library services are indispensable for obtaining articles, patents, translations, etc., when needed. We are appreciative to all the staff of the Ashland Chemical Research and Development Library for providing their invaluable services. We also express our sincere appreciation to the members of the

Advertising Department who were instrumental in preparing diagrams and figures. We are also thankful to the Analytical Department for spectra and to Verne Venne for his legal counseling.

A number of secretaries have been involved in the typing of the manuscript. Our thanks go to Kathy Gasaway, Sara Fry, Jean Traver, Barbara Smyers, Mary Montgomery, and all others who may have helped.

Successful conclusion of any effort depends heavily on understanding by one's family. We cannot thank enough Raksha Trivedi and Cathy Culbertson for this. We also thank our children, friends, and associates for their consideration and tolerence during our preoccupation with *Maleic Anhydride*.

B. C. Trived:*

B. M. Culbertson

^{*} Dr. Trivedi is now with Chem Tech Associates, Baroda, India.

CONTENTS

CHAPTER 1											
Introduction .		•	()	3.	ě	(*)	•	ă.	٠		1
1.1. Introduc	ction .		(*)			ne.	181		38	n.	1
1.2. Properti	es and Stri	ıcture	of N	1A			700				2
1.3. Analysis			7 .	1•11			(40)			;•i;	6
1.3.1. T	itrimetric N										7
1.3.2. G	as-Liquid	Chro	mato	graph	ıy (C	GLC)		•		a • 0	7
1.3.3. In	frared Spe uclear Mag	ectros	сору	(£)	•		·	5.	¥	•	8
1.3.4. N	uclear Mag	gnetic	Res	onand	ce (l	NMR)	(* (ř	•	8
1.3.5. M	liscellaneo	us.	18	•	•		3.0			181	10
1.4. Uses .							÷	٠	*		10
1.4.1. U	nsaturated	Poly	ester	s.	•			:*:		16:	12
1.4.2. A	gricultural	Cher	nical	S.	•:			160		(#1	12
1.4.3. F	umaric Ac	id .		1. • .	90					100	13
1.4.4. M	l iscellaneo	us		:•:	×.						14
1.5. Biologic				ı.	3.	•	ě	*		a.e.	15
	е							•	•		16
CHAPTER 2											
Production of Male	ic Anhydr	ida									17
Production of Mate	ic Annyuri	ue		(*)	:•0	•		::•:		100	17
2.1. Raw Ma	aterials and	Hist	ory								17
2.2. Product									ī.		19
	eactor De										19
2.2.1	.1. Tubu	lar Re	actor	1 ,	ě	•		÷	•		20
2.2.1	.2. Fluid	ized E	Bed						{e}	v	20
2.2.1	.3. Const	ructio	n Mo	iteria	l	•					20
2.2.2. P	roduct Red	cover	٧.		7.0						20
	urification			r.	re:						21
2.2.4. B	y-Products	s .									22
2.3. MA Pro	cesses .	• 88									22
	enzene-Ba			sses					741		23
	.1. Scien										23
	.2. Ruhr										23
	.3. Ruhr										26
2.5.1		4 D	2							**	

2.3.2. C ₄ -Based Processes			26
2.3.2.1. Mitsubishi Process			29
2.3.2.2. BASF Process			30
2.3.2.2. BASF Process			30
2.4. Chemistry of MA from Benzene			31
2.5. Chemistry of MA from C ₄ Hydrocarbons .			33
2.6. Catalysts and their Role			36
2.6. Catalysts and their Role2.7. Epilogue			40
CHAPTER 3			
Reactions of Functional Groups			41
2.1 Introduction			41
3.1. Introduction	٠	•	41
3.2. Reactions of Olemnic Functions	•	•	41
3.2.1. Hydrogenation to Succinic Acid	•	•	44
3.2.2. Hydroformylation	•	•	44
	•		46
3.2.4. Addition of Alcohols		•	47
3.2.5. Addition of Amines		•	48
	•	•	56
	•		56
3.2.8. Addition of Halogens	*	•	60
3.2.9. Halogen Substitution		•	63
3.2.10. Sulfonation	•	•	63
			66
3.3. Oxidation Reactions	•	•	66
3.3.1. Ozone	•	•	69
3.3.2. Epoxidation and Related Reactions		•	73
3.4. Reactions of Anhydride Function		•	73
3.4.1. Hydrolysis		•	75
	٠		78
			81
3.4.4. Reactions with Amines		•	81
3.4.4.1. Maleamic Acids			85
3.4.4.2. Maleimides			93
3.4.5. Friedel-Crafts Reaction	•		93
3.4.5.1. Aromatics	•	•	99
3.4.5.2. Olejins			100
3.4.5.3. Uses		1	100
3.4.6. Acid Chlorides of MA	•		101
3.4.7. Metal Compounds			101 102
3.5. Epilogue	•	. 4	102

Contents xi

CHAPTER 4	
Diels-Alder Reaction	103
4.1. Introduction	102
	103
4.2. Definition	103
	104
•	104
•	110
,	111
4.3.4. Part of the Diene in the Aromatic Ring (Styrene	
Derivatives)	118
	121
4.3.6. Heterocyclic Compounds	127
	127
	130
4.3.7. Miscellaneous	132
N	132
The state of the s	136
	142
	143
	145
	145
4.9. Ephogue	143
CHAPTER 5	
Ene Reaction	147
5.1. Introduction	147
	147
	148
	148
the second control of the second of the seco	-
이 2012년에 전혀하는 사람들이 없는 그 그는 전투에 하는 이 전에 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	151
	154
	158
	160
	162
5 5 35	163
	165
5.5.3. Activation Parameters	166
5.5.4. Stereochemistry	167
	168
5.5.6. The Timing of Bond Formation	
cicio. The riming of Bone I crimation	170

xii	Contents
XII	Contents

5.7	. Catal	ysis .											173
5.8	. Appli	cations											174
5.9	. Epilo	gue .											176
CHAPT	ER 6												
The second of the second		al Reacti	040	£ 1.1									177
r noto ut	ia Ruaic	ui Keacii	ons c	ij IVI	A		•		•	•	(6)		177
6.1	Introd	duction											177
	. Thirot	reactions	with	. A r	omat	ice []	· .	21 Cu	oloa	44iti	0n		177
0.2	6.2.1.	Stereoch						-					
	6.2.2.	Mechani											182
6.2											:•:	•	183
0.3		reactions									•		187
	6.3.1.	Reaction	is Wi	th O	lenns	6	•	٠		٠	•	•	187
		Reaction			1,50							•	191
		Mechani			χ.	٠.	٠				٠	•	192
		Miscella							•	•	•	•	195
		ions of M											197
6.5		olexes of M			٠.								207
	6.5.1.	Charge-	Γran	sfer	Com	plex	es						208
	6.5.2.	Detectio	n of	CT	(EDA	A) Co	omp	lexes	—Pl	nysic	al		
		Methods				,							208
	6.5.3.	Detectio	n of										211
	6.5.4.	MA with											211
	6.5.5	MA with	Tra	nsiti	on M	[etal	s						212
6.6		gue											213
0.0	. Lpno	540				•	•			•	u.j.		
												9	
CHAPT													
Inusua	l Reactio	ons .	÷,	÷		•					•		215
7.1	. Introd	duction		¥						•			215
7.2	. React	ions with	Am	ines									215
7.3	. 1,3-D	ipolar Re	ager	its									220
	7.3.1.	Diazo Co	omp	ounc	ds								220
	7.3.2.	Azides											222
	7 3 3	Nitrones			·								224
		Nitrile C			nines	anc	1 Sul	Ifides	•	i.	3.5	18	225
	7.3.5.	Aziridin		3, 11.	iiiics	, and	Jour	inucs		ė	•	•	227
7.4		Reagent		•	•		•	•	•	٠	•	•	228
7.4		Oximes	5	•	•		*	•	•	•	•	•	228
	7.4.1.			•	•	٠	•	•	•	•	•	1.0	
	7.4.2.	Aminim				•	•	•	•		•	•	228
	7.4.3.	Hydroge	_				•	•	•		•		229
	7.4.4.	Phospho						•	:•1				229
	7.4.5.	Organon	netal	lic (Comp	ound	ds			٠			233

7.4.6.	β-Dicar	rbony	l Co	mpo	unds							235
7.4.7.	Hydrog	enatio	on				¥*	¥		٨.	= .	236
7.4.8.	Alkylat	ion				*	¥	ě		,		237
7.4.9.	Dimeth	ylmal	eic .	Anhy	ydride	Sy	nthe	sis	(*)			238
7.5. Epil	ogue .		٠	•	٠	*	٠	٠		,	*	238
CHAPTER 8					00					14		
Homopolymeri	zation	•	•	•	•	•	•	*		•	•	239
	W 124											4 5

xiii

Contents

7.4.9.	Dimethylr	naleic A	Anhy	dride	Syn	thesi	S	(*)			238
7.5. Epile	ogue			•	•				,	ě	238
CHAPTER 8				90							
Homopolymeriz	ation .			70%							239
F /			-		17		^	170		-	20)
8.1. Intro	oduction .							: 47			239
8.2. Poly	merization N	Method	s.								239
8.2.1.		by γ R	adiati	on							239
8.2.2.	Initiation	by Ultr	aviole	et Ra	diati	ion					241
8.2.3.		by Free	Rad	icals							243
8.2.4.	Initiation	by Pres	sure						9.		253
8.2.5.		by Ioni	c Cat	alysts	3			4			254
8.2.6.	Miscellane	ous In	itiatio	n Me	etho	ds					258
8.3. Prop											259
	Polymer Us	es .									261
8.5. MA-	Based Mon	omers								,	263
8.5.1.	Substitute	d MA									263
	Maleic and			cids							263
	Maleate a										263
8.5.4.											264
8.5.5.											265
8.5.6.											265
	Maleonitri		Fuma	roni	trile	•	•	•			267
0.5.7.	Maicomiti	ne and	I uiiic	110111	iiic		•	*	•		207
CHAPTER 9											
Random Addit	ion Conclum		244.0								266
Kunaom Aaan	ion Copolym	erizaiio	ms	:•	•	•	٠	£			269
9.1. Intro	duction										269
	olymerizatio	ns Mo	nome	re St	udie	ď		**	•		270
9.2.1.										•	270
9.2.2.	Dennis Indoes and en letter	onome rido	15	•	100				(*)		274
9.2.3.		or ide	*	•	•	*	*	6	3	*	
9.2.3.	Vinyl Este Acrylonitr	:18 .	*	•	•	*	×	ě.	9	•	276
	Acryloniti	ne .		•	•	*	•	•	•	•	277
9.2.5.	Acrylic Ac	cia .	٠.		•	ě	É	*	•	*	278
9.2.6.	Acrylic an										279
9.2.7.	Acrylamid									٠	285
9.2.8.				•	i• i	,		161	•	•	286
9.2.9.	,										287
0.2.10	Allyl Mon	omore									297

xiv Contents

288 290 290 290 291 291
290 290 291 291
290 291 291
า91 291
291
/ 4/1
294
295
297
298
298
298
307
-
307
308
308
315
320
325
327
332
334
334
335
337
343
349
353
359
364
371
373
380
381
383
386
388
390
392

Contents xv

10.5. Terna	ry Copolymerizat	ions					y.		411
10.5.1.	Donor-Acceptor							a-	
	tions								412
10.5.2.	Donor ₁ -Donor ₂ -	-Accer	otor	Mo	nomer	Co	mbin	a-	
	tions								418
10.5.3.	Donor-Acceptor	-Acc	epto	r ₂ M	onome	er Co	mbin	a-	
	tions .								422
10.5.4.	Free Monomer-								424
10.6. Prope									425
10.6.1.	Styrene Copolyn	ners .							425
10.6.2.	Olefin Copolyme	ers .						:•	431
10.6.3.	Vinyl Ether Cop	olyme	rs .						437
10.6.4.	Vinyl Ester Cope	olymer	s.						440
10.6.5.	Other Copolyme	rs .							442
10.7. Appli	cations .								443
10.7.1.	Styrene Copolyn	ners .							444
10.7.2.	Olefin Copolyme	ers .						v	447
10.7.3.	Alkyl Vinyl Ethe	er Cop	olym	iers					450
10.7.4.	Vinyl Ester Cope	olymei	rs .			(*)			452
10.7.5.	Miscellaneous C	opolyn	ners	,			•.	,	453
Appendix to	Chapter 10 .				,	•			454
CHAPTER 11									
Graft Copolymers	,								459
Graft Copolymers				. ,		•		•	439
11.1 Intro	duction								459
11.1.1.						•	•	•	459
11.1.2.								•	462
11.1.3.	Other Saturated	Polym	ers :	and (onoly	mers		•	464
11.1.4.	Polyisoprene	TOIYII	1013	and v	copor	y III CI 3	•	•	466
11.1.5.	Polyisoprene Butadiene Polyn	ners ar	nd Co	anal	mers	•		•	469
11.1.6.	Other Unsaturat	ed Co	nolv	mers	ymers	•		•	471
11.1.7.	Carbon Black an	d Car	hon '	Fibe	r Graf	te .	•	•	473
11.1.8.	Alternating Cop						2.5	•	473
		· ·				•		.*.:	476
11.2. Olare	Tolymer Oses					•	•	*	470
CHAPTER 12		Post of							
Maleic Anhydride	e in Condensation	Polym	ers	2			•		479
	duction .				•	•		•	479
	turated Polyesters		•		•		•	•	479
									479
12.2.2.	Production								480

xvi	Content

	12.2.2.1.	Glycol-	-Anhydr	ide Red	actions				.:	480
	12.2.2.2.	Epoxid	e-Anhye	dride R	eaction	ns			•	482
12.2	.3. Malea	e-Fum	arate Iso	omeriz	ation				•	483
12.2	.4. Reacti	ve Dilu	ent Mor	omers		ě.				485
12.2	.5. Crossli	nking l	Reaction					•	٠	486
12.2	.6. Crossli	nking l	Initiation	ı .					٠	488
12.2	.7. Modifi	ed Uns	aturated	Polye	sters	*				489
12.2	.8. Proper	ties of	Unsatur	ated P	olyeste	ers	÷	4		492
12.2	.9. Applic	ations	of Unsat	urated	Polye	sters			•	495
12.3. A	lkyd Resins						,		•	499
12.4. M	Ialeate-Vin	yi Este	rs .				,		•	500
12.5. M	1A Modified	d Addit	ion Poly	mers						503
12.6. Is	socyanate C	rosslinl	ked Poly	esters		4			101	505
12.7. P	olythiol Cro	sslinke	d Polye	sters					162	506
	1iscellaneou									507
12.9. C	Curing of Ep	oxy Re	esins							507
12.10. N	1 aleimides a	nd Pol	yimides	1.0						511
12.11. N	1 iscellaneou	s MA	Condens	ations						515
					9					
APPENDIX-						,				519
A.1. Te	erpolymers	Contai	ning Ma	leic An	hydric	le (m	1)	*		520
	laleic Anhyo				mer Pa	itents	3		•	543
	lefin-MA C)•·				,	586
	llyl Vinyl I								ents	621
	inyl Acetate		-					ıts	:*:	648
	atents on M			e Copo	lymer	s with	1			
	liscellaneou					-				660
A.7. M	IA Graft Po	lymer l	Patents							675
REFERENC	EES .				٠.		v	*		705
INDEX	2 2 2			4 P		4.				819
			- 17:				-	120	e.	A100 E

INTRODUCTION

1.1. INTRODUCTION

Maleic anhydride (MA)* was first produced some 150 years ago by dehydration of maleic acid. Today, it is a chemical of considerable commercial importance. Next to acetic and phthalic anhydride, it is the second most important anhydride in commercial use.

From only 4.5 million lbs produced in 1940, (1,2) MA has gained impressively, with a production of 341 million lbs in 1978. (3) MA has seen some impressive growth periods in the past as is evident in Fig. 1-1. The effect of the oil embargo of 1974 is also evident. (2) Japan saw an average 27% increase in MA consumption during the period 1971–1973. (2,4)

Table 1.1. Maleic Anhydride Production Capacity (5)

Producer	Raw material ^a	Capacity, million lb/year
Amoco	Butane	60
Joliet, Illinois		
Ashland Chemical	Benzene	60
Neil, West Virginia		
Derika	Benzene	50
Houston, Texas		
Koppers Company ^b	By-product from PA	10
Cicero, Illinois		
Monsanto ^d		115
St. Louis, Missouri		¥
Reichhold Chemical ^c	Benzene	44
Morris, Illinois		
Tenneco	Benzene	26
Fords, New Jersey		
USS Chemical	Benzene	80
Neville Island, Pennsylva	nnia	

[&]quot; New EPA regulation requiring 100% control of benzene (no detectable benzene emissions) for new plants may favor butane-based plants in the future (Federal Register, April 18, 1980).

Reichhold closed a benzene-based plant (60 million lb/year) in October 1979.

Koppers shut down a benzene-based facility.¹⁷

^d Monsanto reportedly uses butane feed stock for about 20% of its capacity. Also, it has announced plans for additional 130 million lb/year capacity of butane-based MA. ⁽⁸⁾ The plant is scheduled to be on stream in early 1983.

^{*} Sometimes in the literature acronyms MAN and MAH are used. For this work, MA will be used.

Fig. 1-1. U.S. production of MA.

In the United States there are currently eight major producers of MA. Table 1.1 gives a list of producers along with their location and production capacities; the raw material used by each is also indicated.

1.2. PROPERTIES AND STRUCTURE OF MA

Maleic anhydride (MA) is chemically 2,5-furandione,* or cis-butene-dioic anhydride. It is also known by other names such as toxilic anhydride, maleic

^{*} CAS Registry No. 108-31-6.

Table 1.2. Physical Properties of MA (9.40,58)

Crystalline forms	Needles, rhombic
Flash point	
Engineer assessment of the contract of the con	Closed cup 102°C (215°F)
Flammable limits (by volume)	
Autoignition temperature	477°C (890°F)
Boiling point at 760 mm Hg	202°C (395°F)
Color	Colorless crystals
Corrosivity	Not corrosive to metals except in the presence
	of water
Deliquescence	Slight
Density (water = 1.00)	
	Solid 1.48 g/cm ³
Heat of combustion	333.9 kcal/mole
	(332.29 kcal/mole) ⁽⁷⁵⁾
Heat of evaporation	13.1 kcal/mole
Heat of fusion	
	(2.929 kcal/mole) ⁽⁶²⁾
Light sensitivity	
Melting point (freezing point)	
Odor	
Solubility in water	
Specific heat	
Vapor density (air = 1)	
Dipole moment (benzene, 25°C)	
Viscosity (absolute)	
Threshold limit value (OSHA)	$0.25 \text{ ppm or } 1 \text{ mg/M}^3$

acid anhydride, or malic acid anhydride. It is a white hygroscopic solid and forms orthorhombic crystalline needles. In Table 1.2 physical properties of MA are given. (9) Data on vapor pressure of MA are given in Fig. 1-2. (9,10) Note that even as a solid it has a significant vapor pressure and this should be kept in mind while handling it. (11) Commercially, it is available from producers either as a molten liquid or as briquettes.

Recently, Vykhrest et al. (82)* have examined the temperature dependency of the viscosity, electrical conductivity, and density of MA, thus providing data of considerable importance in handling MA.

MA, being an anhydride, is subject to hydrolysis to the acid on storage. Thus, to obtain a pure sample of MA, purification is necessary. It is purified commercially by distillation. In small-scale laboratory-type uses, MA can be purified by sublimation or crystallization. Its solubility in various solvents is given in Table 1.3. (12) Chloroform or aromatic solvents such as benzene, toluene, and xylene are adequate as crystallizing solvents. Larger batches may

^{*} In this reference viscosity and conductivity seem to have been measured at 50°C. This is strange considering the melting point of MA is 53°C (Table 1.2).