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Preface

Hyperspectral imaging has witnessed tremendous growth over the past few years. Still its applica-
tions to new areas are yet to be explored. Many hyperspectral imaging techniques have been devel-
oped and reported in various venues. My first book, Hyperspectral Imaging: Techniques for
Spectral Detection and Classification, referenced as Chang (2003a), was written in an attempt to
summarize the research conducted at that time in my laboratory (remote sensing signal and image
processing laboratory, RSSIPL) and to provide readers with a peek of this fascinating and exciting
area. With rapid advancement in this area many signal processing techniques have been developed
for hyperspectral signal and image processing. This book has been written with four goals in mind.
One is to continuously explore new statistical signal processing algorithms in this area for various
applications. Many results in this book are new, particularly some in Chapters 2, 4, 5-6, 11, 16, 18—
19, 23, 24, 29, 30-31, and 33. A second goal is to supplement Chang (2003a), where many poten-
tial research efforts were only briefly mentioned (in Chapter 18 of the book). A third goal is to
distinguish this book from Chang (2003a) in many ways. Unlike Chang (2003a) where the main
theme was hyperspectral target detection and classification from a viewpoint of subpixel and mixed
pixel analysis, this book is focused on more in-depth treatment of hyperspectral signal and image
processing from a statistical signal processing point of view. A fourth and last goal is to focus on
several unsettled but very important issues that have been avoided and never addressed in the past.

One issue is “how many spectral signatures are required to unmix data?” arising in linear hyper-
spectral unmixing. This has been a long-standing and unresolved issue in remote sensing image
processing, specifically hyperspectral imaging, since the number of signatures to be used for data
unmixing has a significant impact on image analysis while its accurate number is never known in
real applications. Another is “how many pure spectral signatures, referred to as endmembers, are
supposed to be present in the data to be processed?” It is common practice to assume that the
number of signatures used for spectral unmixing is the same number of endmembers.
Unfortunately, such a claim, which has been widely accepted by the community, is not always true
in practical applications (see Chapter 17). The issue of endmembers has not received much interest
in multispectral image analysis because of its low spectral and spatial resolutions that generally
result in mixed data sample vectors. However, due to recent advances in hyperspectral imaging
sensors with hundreds of contiguous spectral bands endmember extraction has become increas-
ingly important since endmembers provide crucial “nonliteral” information in spectral interpreta-
tion, characterization, and analysis. Interestingly, this issue has never been seriously addressed
until recently when it has been investigated by a series of papers (Chang, 2006ab; Chang and
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Plaza, 2006; Chang et al., 2006; Plaza and Chang 2006) by introducing a new concept of virtual
dimensionality (VD). Besides, some controversial issues result from misinterpreting VD. There-
fore, one of the major chapters in this book is Chapter 5, which revisits VD to explore its utility in
various applications. Unlike the intrinsic dimensionality (ID), also known as effective dimension-
ality (ED), which is somewhat abstract and defined as the minimum number of parameters to rep-
resent general high-dimensional multivariate data, VD is more practical and realistic. It is defined
as the number of “spectrally” distinct signatures particularly developed for hyperspectral data in
which the non-literal (spectral) information is more crucial and vital than information provided by
other dimensions such as spatial information. In particular, an issue arises in how to define the
spectral distinction among signatures in VD estimation. Furthermore, unlike ID that is a one-size-
fits-all definition for all data sets, VD should adapt to data sets used for different applications as
well as vary with the techniques used to estimate VD. In order to address this issue, Chapter 5
explores two types of VD criteria, data characterization-driven criteria and data representation-
driven criteria, to define spectrally distinct signatures, and further decouples the concept of VD
from the techniques used to estimate VD. Consequently, when VD is poorly estimated by one tech-
nique for a particular data set, it is not the definition of VD to be blamed, but rather the technique
used for VD estimation that is not applicable to this particular data set. In addition, an issue related
to VD is “characterization of pixel information.” For example, an anomaly is not necessarily an
endmember and vice versa. So, the issues “what is the distinction between these two?”” and “how
do we characterize these two?” become interesting issues in hyperspectral data exploitation to
be discussed in Chapter 18.

Another interesting topic presented in this book is a new concept of “hyperspectral information
compression” introduced in Chapters 19-23. It is different from the commonly used so-called
hyperspectral data compression in the sense that hyperspectral information compression is gener-
ally performed based on the information required to be retained rather than the size of hyperspec-
tral data to be compressed. Therefore, a more appropriate term to be used is “exploitation-based
lossy hyperspectral data compression.” Nevertheless, it should be noted that the definitions
and terminologies used in these chapters are by no means standard.

Finally, an issue of “multispectral imagery versus hyperspectral imagery” is also investi-
gated. It seems that there is no cut-and-dried definition to distinguish these two terminologies.
A general understanding of distinguishing these two is that a hyperspectral image is acquired
by hundreds of contiguous spectral channels/bands with very high spectral resolution, while a
multispectral image is collected by tens of discrete spectral channels/bands with low spectral
resolution. If this interpretation is used, we run into a dilemma, “how many spectral channels/
bands are enough for a remotely sensed image to be called a hyperspectral image?” or “how
fine the spectral resolution should be for a remote sensing image to be considered as a hyper-
spectral image?” For example, if we take a small set of hyperspectral band images with spec-
tral resolution 10 nm, say five spectral band images, to form a five-dimensional image cube, do
we still consider this new-formed five-dimensional image cube as a hyperspectral image or
simply a multispectral image? If we adopt the former definition based on the number of bands,
this five-dimensional image cube should be viewed as a multispectral image. On the other
hand, if we adopt the latter definition based on spectral resolution, the five-dimensional image
cube should be considered as a hyperspectral image. Thus far, it seems that there is no general
consensus on this issue. In Chapter 31, an attempt is made to address this issue from a view-
point of how two versions of independent component analysis (ICA), over-complete ICA, and
under-complete ICA can be used to resolve this long-debated issue in the context of linear
spectral mixture analysis (LSMA). After all, some of these issues may never be settled or
standardized for years to come. Many researchers can always argue differently at their
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discretion and provide their own versions of interpretation. I have no intention of disputing any
of them, but rather respect their opinions.

Since processing hyperspectral signatures as one-dimensional signals and processing hyper-
spectral images as three-dimensional image cubes are rather different, this book makes a distinc-
tion by treating hyperspectral image processing and hyperspectral signal processing in two
separate categories to avoid confusion. To this end, three categories are specifically outlined in this
book: Category A: hyperspectral image processing; Category B: hyperspectral signal processing;
and Category C: applications.

For better understanding, a set of six chapters is included in PART I as preliminaries that
cover fundamentals and provide a basic background required for readers to follow algorithm
design and development discussed in this book. Category A is made up of 15 chapters (Chap-
ters 7-23) treated separately in four different parts, Part II to Part V. Category B consists of
six chapters (Chapters 24-29) in two separate parts, Part VI and Part VII. Finally, applica-
tions make up Category C.

It is worth noting that many materials presented in this book have been only available
after Chang (2003a). Theses include endmember extraction (Chapters 7-11), algorithm design
using different levels of information (supervised linear hyperspectral mixture analysis in
Chapters 12-15), pixel characterization and analysis (unsupervised hyperspectral analysis in
Chapters 16-18), exploitation-based hyperspectral information compression (Chapters 19-23),
hyperspectral signature coding and characterization (Chapters 24-29), and applications
(Chapters 30-32) in Category C.

There are three unique features in this book that cannot be found in Chang (2003a): (1) Part I:
preliminaries (Chapters 2-6); (2) extensive studies of synthetic image-based experiments for per-
formance evaluation; and (3) an appendix on algorithm compendium that compiles recently devel-
oped signal processing algorithms developed in the RSSIPL, all of which are believed to be useful
and beneficial to those who design and develop algorithms for hyperspectral signal/image process-
ing. Because this book also addresses many issues that were not explored in Chang (2003a), it can
be used in conjunction with Chang (2003a) without much overlap, where the latter provides neces-
sary basic background in design and development of statistical signal processing algorithms for
hyperspectral image analysis, especially for subpixel detection and mixed pixel classification.
Therefore, on one end, those who have been involved in hyperspectral imaging and are familiar
with hyperspectral imaging techniques will find this book useful as reference material. On the
other end, those who are new will find this book a good and valuable guide on the topics that may
interest them.

I would like to thank the Spectral Information Technology Applications Center (SITAC) that
provides its HYDICE data to be used for experiments in this book. I would also like to acknowl-
edge the use of Purdue’s Indiana Indian Pine test site and the AVIRIS Cuprite image data website.

I owe my sincere gratitude and deepest appreciation to my former Ph.D. students, Drs.
Sumit Chakravarty, Hsian-Min Chen, Yingzi Du, Qian Du, Mingkai Hsueh, Baohoing Ji,
Xiaoli Jiao, Keng-Hao Liu, Weimin Liu, Bharath Ramakrishna, Hsuan Ren, Haleh Safavi,
Chiun-Mu Wang, Jianwei Wang, Jing Wang, Su Wang, Englin Wong, Chao-Cheng Wu, Wei
Xiong, and MS student, Ms. Farzeen Chaudhary as well as my current Ph.D. student, Shih-Yu
Chen. My appreciation is also extended to my colleagues, Professor Chinsu Lin with the
Department of Forestry and Natural Resources at National Chiayi University, Dr. Ching Wen
Yang who is the Director of Computer Center, Taichung Veterans General Hospital, and Pro-
fessor Ching Tsorng Tsai with the Computer Science Department at Tunghai University. I
would like to thank particularly my former Ph.D. students, Dr. Chao-Cheng Wu who carried
out most of the experiments presented in Chapters 7-11, Dr. Ken-Hao Liu who performed
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many experiments described in Chapters 21-23, Dr. Su Wang who did all the work men-
tioned in Chapter 29, Dr. Englin Wong who performed all the experiments described in
Chapter 32, and Professor Antonio J. Plaza who contributed to some part of Chapter 18
when he was on sabbatical leave from the Computer Science Department, University of
Extremadura, Spain, in 2004 to visit my laboratory. This book could not have been com-
pleted without their contributions.

I would also like to thank the Ministry of Education in Taiwan for supporting me as a Distin-
guished Lecture Chair within the Department of Electrical Engineering from 2005 to 2006, a
Chair Professorship of Reduction Technology within the Environmental Restoration and Disaster
Reduction Research Center and Department of Electrical Engineering from 2006 to 2009, and a
Chair Professorship of Remote Sensing Technology within the Department of Electrical Engi-
neering from 2009 to 2012, at National Chung Hsing University where Professor Yen-Chieh
Ouyang of Electrical Engineering has been a very supportive host during my visit. In particular,
during the period 2009-2010, I was on sabbatical leave from UMBC to visit National Chung
Hsing University where my appointment as a distinguished visiting fellow/fellow professor was
supported and funded by the National Science Council in Taiwan under projects of NSC 98-
2811-E-005-024 and NSC 98-2221-E-005-096. All their support is highly appreciated.

Last but not least, I would also like to thank my friends, Dr. San-Kan Lee (Deputy Superintend-
ent of Taichung Veterans General Hospital (TCVGH)), Dr. Clayton Chi-Chang Chen (Chairman of
Radiology at TCVGH), Dr. Jyh-Wen Chai (Section Chief of Radiology at TCVGH), and Dr. Yong
Kie Wong (Head of Dental Department at TCVGH) who have selflessly provided their expertise
and resources, especially an excellent testbed environment to help me use hyperspectral imaging
techniques in magnetic resonance imaging (MRI). Chapter 32 is indeed a culmination of such a
great working relationship.

As a final note, I would like to share that this book was supposed to be delivered by 2008. The
most important factor that caused the delay is the urge to include the latest reports on hyperspectral
data analysis. It is very difficult and challenging to keep a track of such new developments.
Nevertheless, this book has grown three times larger than what I had originally proposed. Those
who are interested in my forthcoming 2013 book can have a quick peek of these topics briefly
discussed in Chapter 33, which includes a new development of target-characterized virtual
dimensionality (VD), real-time and progressive processing of endmember extraction, unsupervised
target detection, anomaly detection, as well as their field programmable gate array (FPGA)
implementation.
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