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To all those practicing LIBS throughout the world: may your
experiments be rewarding and your applications successful.



Preface

The invention of the laser has resulted in many technological spin-offs. One that has emerged
as a field-deployable, analytical technique is laser-induced breakdown spectroscopy (LIBS),
sometimes called laser-induced plasma spectroscopy (LIPS) or laser spark spectroscopy
(LSS). LIBS uses a low-energy pulsed laser (typically tens to hundreds of millijoules per
pulse) to generate a plasma, which vaporizes a small amount of the sample. Spectral features
emitted by the excited species, mostly atoms (but more recently molecules as well), are used
to obtain quantitative and qualitative analytical information. Targets have included solids,
gases, liquids, slurries, and aerosols. The first record of the observation of a LIBS plasma
occurred in a meeting abstract in 1962. In the past 50 years, applications have been many.
They range from sampling iron and steel, soil for contamination, metals used in nuclear
reactors for degradation, artwork for dating, to the more recent analysis of soil and rocks
on Mars and toxic substances like anthrax. Improved statistical techniques for analysis of
LIBS spectra are being developed, and considerable LIBS instrumentation is now available
commercially. Experiments have driven improved theoretical and computational models of
plasma initiation and expansion.

In the early 1980s, there were few groups working on LIBS. In the past decade, however,
the field has expanded greatly with many international groups now investigating and devel-
oping the method for a variety of applications. The first international conference solely
on LIBS was held in Pisa, Italy in 2000. Subsequently, international meetings have been
held every 2 years, and regional meetings in the odd years in North America, Europe,
and the Middle East. Beginning in 2011, annual LIBS meetings have been held in China.
Recently, LIBS 2012 was successfully held in Luxor, Egypt. The 2014 international meeting
is scheduled for Beijing, China.

Several books and book chapters published in the last 7 years have provided snapshots
of the status of LIBS at the time of their publication. Our goals are different. LIBS differs
from a standard laboratory analytical tool, such as the inductively coupled plasma (ICP)
which operates at high power, continuously, with a homogeneous sample feed. In contrast,
the laser typically generates a low-energy, short duration, low duty-cycle plasma, often on
an inhomogeneous sample. Whereas the ICP is restricted mainly to laboratory use, LIBS
is especially useful in field applications. However, its use as an analytical tool requires
special consideration as to its characteristics. Choosing an appropriate temporal regime
and portion of the plasma for observation, and using new statistical tools can enhance its
capability considerably. Hence we begin by reviewing and summarizing the principles of
plasma spectroscopy, analytical spectrochemistry, and instrumentation as it applies to LIBS.
We then go on to review current and upcoming applications. Included in this 2nd edition
are new data and archival material to assist experienced as well as new users. Embedded
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are comments on the advantages of the method along with its limitations, to provide the
reader the ability to judge whether or not LIBS can be applied in a particular situation. A
new addition to this edition is sets of problems (and solutions) on the material in Chapters
2-5. These are designed to give the reader practice in the actual computations involved in
applying basic concepts.

In the first chapter, we present a historical review of LIBS development through the year
2012, based on the peer-reviewed literature. We focus on the earliest time an innovation
or application appeared on the scene, rather than tracing every development through to the
present day. Of course, continuous improvements in apparatus, techniques, and fundamental
understanding drive the reexamination of old applications, and the emergence of new
applications spurs improvements in a recurring spiral of progress. Chapter 2 contains
a review of the basic principles of plasma atomic emission spectroscopy, updated with
references to databases and analysis tools now available on the web. A plasma is a local
assembly of atoms, ions, and free electrons, overall electrically neutral, in which the charged
species often act collectively. Natural light-emitting plasmas, like the sun, are very familiar.
Electrically induced plasmas have been generated in the laboratory since the 1800s, and
laser-induced plasmas have been investigated since the 1960s. In Chapter 2, we deal with
the intricacies of LIBS plasma formation, lifetime, and decay, in and on a variety of media,
focusing on spectral information as the primary diagnostic technique. An example of using
the Boltzmann plot for temperature determination utilizes the spectrum of once-ionized
uranium. Newer concepts in laser ablation found in recent literature, such as “ablation
sensitivity,” are reviewed. Recent published advances in nanosecond and femtosecond
multiple pulse LIBS are noted.

Each important element of a LIBS apparatus is discussed in turn in Chapter 3. The
unique characteristics of LIBS originate from the use of one or more powerful laser pulses
to “prepare” the target sample and then “excite” the constituent atoms to emit light. To
generate and capture those signals, LIBS requires a combination of modern laser, detector,
timing, and data-gathering instrumentation, teamed with traditional spectroscopic apparatus
including spectrometers and their optics. New developments in fiber optics (including fiber
lasers) and detector technology (such as the electron-multiplying CCD) are highlighted.
The calibration of wavelength and spectral response is treated, along with methods of LIBS
deployment from basic setups to more advanced configurations.

The next three chapters deal with fundamental concepts in spectrochemical analysis, and
how they apply to and are modified by the conditions under which LIBS operates. Analytical
figures of merit are used to benchmark the capabilities of an analysis method and to compare
the performance of distinct analytical techniques using a common set of parameters. These
include limits of detection, precision, accuracy, sensitivity, and selectivity. In Chapter 4,
we present a discussion of the more important figures of merit, how they are used to
characterize LIBS, and how they are determined. A section on calibration-free LIBS has
been added because of the expanding use of this technique. The basic element of any LIBS
measurement is the emission spectrum recorded from a single plasma. Each firing of the
laser atomizes a portion of the sample in the focal volume and produces a plasma that
excites and re-excites the atoms to emit light. This is then applied either to qualitative
analysis as discussed in Chapter 5 or to quantitative measurements as presented extensively
in Chapter 6. In the former, some basic and practical methods of element and material
identification are presented. In the latter, we discuss the ultimate goal to provide a highly
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quantitative analysis, hence to determine with high precision and accuracy the concentration
of a species in a sample or the absolute mass of a species. We treat how LIBS interacts with
different forms of samples, internal standardization, and matrix effects. A detailed example
of measuring impurities in a lithium solution is presented. Swipe analysis is treated in a
new section, and the comparison of LIBS results with other standard methods, such as ICP,
has been augmented.

Chemometrics describes the use of mathematical models and statistical principles in
the field of analytical chemistry. Because of the growth of statistical techniques for LIBS
analyses, a new Chapter 7, authored by Dr Jennifer Gottfried, has been added. Chemometric
analysis techniques have traditionally been applied to spectroscopic data for two primary
purposes: (1) experimental design (i.e., selection of the optimal experimental procedures)
and (2) extraction of the maximum relevant information from chemical data. The use
of chemometrics enables multivariate analysis of complex spectral data. By considering
multiple variables simultaneously, a number of advantages can be realized, including the
ability to extract more information from the data, noise reduction, neglecting the effects
of interfering signals, and the exposure of outlier samples. Applications are discussed,
and many references are included to guide the reader to detailed information on specific
methods. Terms commonly used in chemometrics are defined, and a tutorial approach to
developing models is presented. Steps in the model development are illustrated with figures
from specific applications, with particular emphasis on the advantages and limitations
of chemometrics. In addition to describing ways to ensure accurate model development,
techniques such as receiver operating characteristic curves for developing and testing
models are presented.

The ability to make remote measurements in field environments is one of the principal
advantages of LIBS. This application and three basic techniques for its use are treated in
Chapter 8. In the first method, the laser beam is directed over an open path (through air,
gas, or vacuum) to the target on which a plasma is formed, and then the plasma light is
collected at a distance. In the second method, the laser pulses are injected into a fiber optic
and transported to the remotely located target sample, while in the third method, a compact
probe containing a small laser is positioned next to the remotely located sample and the
plasma light is sent back to the detection system over a fiber optic cable. We discuss topics
such as conventional stand-off analysis, the development of very long distance analysis,
and details of the physics, engineering, and applications of fiber optics.

Chapter 9 has been completely revised, focusing on what LIBS does best, solving
difficult and exotic problems, usually in the field, such as stopping terrorism, assessing
nuclear proliferation, and exploring the solar system. The detection of Chemical, Biological,
Radiological, Nuclear, and Explosive (CBRNE) threats by LIBS has received attention
because of LIBS ability to perform analyses at a distance, in situ. LIBS instruments can be
configured as person-portable devices or larger instruments intended for stand-off detection
which are transported to the field in a vehicle. LIBS has the ability to determine isotope
ratios of actinide atoms because of their relatively large isotope shifts. Simple molecules,
however, have vibrational and rotational structures which can yield much larger isotope
shifts than atoms. This newer technique for isotopic analysis is discussed. A transportable
LIBS instrument is reviewed with considerable detail on the design and performance.
The chapter concludes with a review of LIBS for space missions to planets, comets, and
asteroids. The issue of calibration methods for such projects is discussed. The LIBS-based
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ChemCam instrument on the Mars Science Laboratory rover is briefly described along with
initial results.

The Appendices contain reference and original material that will be useful to the LIBS
community. They include (a) a discussion of the essentials of basic safety considerations for
LIBS operations; (b) a list of references to major LIBS publications and papers referencing
international and regional LIBS meetings; (c) updated tables of published detection limits
and the relevant references, and a unique table of element detection limits using a uniform
method of analysis developed for this text; and (d) traces of LIBS spectra in air, on metals,
turkey skin, trinitite, and synthetic silicates.

Starting from fundamentals and moving through a thorough discussion of equipment,
methods, and recent and coming applications, we believe that the 2nd Edition of the
Handbook of Laser-Induced Breakdown Spectroscopy will provide a unique reference
source that will be of value for many years for this important analytical technique.

David A. Cremers
Leon J. Radziemski



Acronyms, Constants, and Symbols

ltem Definition Value, units, or comments
a(i) Absorption coefficient as a function of cm™!
wavelength
AD Array detector
AOTF Acousto-optic tunable filter
APD Avalanche photodiode
APXS Alpha-proton X-ray spectrometer
i Speed of light in vacuum 299 792 458 ms™!
CBRNE Chemical, biological, radiological, Suite of WMD threats
nuclear, and explosive
CCD Charge-coupled device Two-dimensional array of
light-sensitive pixels
CDhC U.S. Center for Disease Control
CF-LIBS Calibration free-LIBS
ChemCam Name of the LIBS instrument on
Curiosity rover
COD Continuous optical discharge
CONOPS  Concept of operations
CRM Certified reference material Used to calibrate LIBS
CWwW Continuous wave
DPSS Diode-pumped solid state A solid-state laser which is optically
pumped using laser diodes (compare
to a flashlamp-pumped laser)
e Electron charge 1.60217653 x 107" C
eV Electron volt 1.60217653 x 1077 J; also: 1 eV
(energy) = 8065.544 cm™'; 1 eV
(temperature) = 11 600 K (from kT)
e(i) Emissivity as a function of wavelength
£ Vacuum permittivity 8.854187817 x 10~'2 Farads m™!
EMCCD Electron-multiplying CCD
1% f-number of an optical system e.g., f/# = f/d = (lens focal
length)/(lens diameter)
FOC Fiber optic cable
FOM Figures-of-merit A set of parameters to benchmark the
performance of an analytical method
FWHM, ' Full-width at half maximum width of a spectral line at the points of

half maximum intensity, units of
wavelength, wavenumber or frequency
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Item Definition Value, units, or comments

HWHM  Half-width at half maximum Half-width of a spectral line at the
points of half maximum intensity

h Planck constant 6.6260693 x 107 J-s

h Planck constant/2z 1.0545717 x 10734 )

ICCD Intensified CCD

ICP Inductively coupled plasma Radio-frequency-powered continuous
plasma source

IPDA Intensified PDA

IR Infra-red Refers to a spectral region, A>700 nm

k Boltzmann constant 1.3806505 x 10723 JK~!

LIBS Laser-induced breakdown

spectroscopy

LIDAR Light detection and ranging Optical methods of remote sensing of
materials in the atmosphere

LIF Laser-induced fluorescence

LIPS Laser-induced plasma spectroscopy Alternate name for the LIBS method

LOD Limit of detection

LOQ Limit of quantification LOQ = 3.3LOD, usually

LSC Laser-supported combustion Type of plasma wave

LSD Laser-supported detonation Type of plasma wave

LSR Laser-supported radiation Type of plasma wave

LSS Laser spark spectroscopy Alternate name for the LIBS method

LTE Local thermodynamic equilibrium

LTSD Lens-to-sample distance

Lv Latent variables Chemometric term

A Wavelength pum, nm, Angstroms (A); 1 um = 1000
nm = 10 000 A. In tables such as
NSRDS-NBS 68, below 200 nm
wavelengths are vacuum wavelengths,
above 200 nm they are air
wavelengths. A,.c = ni,,, where n is
the index of refraction of air at that
wavelength

m Electron rest mass 9.1093826 x 107! kg

MCP Microchannel plate Intensifier for a CCD and PDA

NA Numerical aperture

ND Neutral density Usually used to describe a filter that
reduces the intensity of a range of
wavelengths of light equally; ND =
—logoW/l,)

Nd:YAG  Neodymium YAG laser Type of solid-state laser typically used
for LIBS

NIR Near-IR Refers to a spectral region between
700 and 3000 nm

OES Optical emission spectroscopy

PC Principal component Chemometric term

PCA Principal components analysis Chemometric term

PD Photodiode

PDA Photodiode array One-dimensional array of photodiodes
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XVII

Item Definition Value, units, or comments
PLS-DA Partial least squares discriminant Chemometric term
analysis
PMT Photomultiplier tube Optical detector
ppm Parts-per-million Concentration unit, usually stated as
wt to wt; also stated as pgg™
v Frequency T, Hz
s Electron density cm™?
RDD Radiological dispersal device
R-FIBS Remote filament-induced breakdown
spectroscopy
RM Reference material Used to calibrate LIBS
RMI Remote micro imager
RMSEC Root mean square error of calibration Chemometric term
RMSEP Root mean square error of prediction Chemometric term
ROC Receiver operating characteristic Chemometric term
RSD Relative standard deviation
o Wavenumber erm!
s Standard deviation
SIMCA Soft independent modeling of class Chemometric term
analogies
SNM Special nuclear materials
S/N Signal to noise ratio
T Absolute temperature Degrees Kelvin (K)
ty Gate width Time period over which the plasma
light is recorded
t Delay time Time period between arrival of the
laser pulse at the sample to form the
plasma and the start of recording of
the plasma light signal
units of Torr, bar, Nm~2, Pascal 1 atm = 760 Torr = 1.013 bar =
pressure 1.013 x 10° Nm~% =0.1013 MPa
uv Ultraviolet Refers to a spectral region,
200<A<400 nm
VIP Variable importance in projection Chemometric term
VIS Visible Refers to a spectral region,
400<A<700 nm
VP Vehicle transportable prototype
VUV Vacuum ultraviolet Refers to a spectral region, A <200 nm
Wo Beam waist radius
Wavenumber = 1/ Units of cm™'. Usually wavenumbers
come from differences of energy levels
and correspond to vacuum
wavelengths, not air wavelengths
WMD Weapons of mass destruction
XRF X-ray fluorescence Method of element detection using
their X-ray emission
7R Rayleigh range Distance from the beam waist (w,,) at

which w, increases by a factor of /2

Constant values from: Mohr, P.J., and Taylor B.N. (2005). CODATA recommended values of the fundamental
constants: 2002. Review of Modern Physics 77: 1-108.
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1

Introduction

1.1 Atomic Optical Emission Spectrochemistry (OES)

1.1.1 Conventional OES

Since the early 1800s, scientists realized that elements emitted specific colors of light. As
atomic theory developed, spectroscopists learned that those colors, wavelengths, or frequen-
cies were a unique signature for each atom and ion. Hence spectra became the fingerprints
of the emitting atomic species. This is the basis for atomic spectrochemical analysis.

Early sources of spectra were the sun, flames, and gas discharges, such as the old
Geissler tube. These were plasma sources, with varying degrees of ionization depending
on the source conditions. Against the 5000 K photosphere of the sun, we see the Fraun-
hofer absorption lines due to neutral and once ionized species. In the solar corona, highly
ionized spectra are observed because of plasma temperatures that reach into the hundreds
of thousands of degrees.

Many sources have been developed for spectrochemistry, but two workhorses have
been the conventional electrode spark and, more recently, the inductively coupled plasma
(ICP). These are illustrated in Figure 1.1, which also contains a photograph of the laser
spark. The electrode spark has excitation temperatures of up to 50 000 K, while the argon
ICP temperature is more typically about 10 000 K. Usually these sources are used for
laboratory analyses, but occasionally they are pressed into service for situations requiring
more rapid data acquisition. For example, the conventional spark has been used for decades
to monitor the steel-making process by withdrawing a molten sample that is then solidified
and transported to a laboratory located in the plant for rapid analysis. Decisions on additives
are made based on the resulting spectroscopic data.

1.1.2 Laser OES

As soon as the laser was developed in the early 1960s, spectrochemists began investigat-
ing its potential uses (Radziemski, 2002). An early observation was that a pulsed laser
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