A

2l
b4 }p g“@
L n1f
PR A

S B v

Karl Heinz Hoffmann
Michael Schreiber (Eds.)

Computational
Physics
Selected Methods

Simple Exercises
Serious Applications

With 145 Figures, 15 Tables
and a 3.5” MS-DOS Diskette

©: Springer

Professor Dr. Karl Heinz Hoffmann
Professor Dr. Michael Schreiber

Institut fiir Physik

Technische Universitiat Chemnitz-Zwickau
D-09107 Chemnitz

Germany

Library of Congress Cataloging-in-Publication Data.

Hoffmann, K. H. (Karl Heinz), 1953— . Computational physics : selected methods, simple
exercises, serious applications / K. H. Hoffmann, M. Schreiber. p. cm. Includes bibliographi-
cal references and index.

ISBN 3-540-60689-0 (Berlin : alk. paper)

1. Physics—Problems, exercises, etc. — Methodology. 2. Numerical calculations. 3. Mathema-
tical Physics. I. Schreiber, Michael, 1954—. II. Title.

QC32.H67 1996 530°.01’13—dc20 96-2830

ISBN 3-540-60689-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con-
cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, re-
production on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protec-
tive laws and regulations and therefore free for general use.

Please note: Before using the programs in this book, please consult the technical manuals provided by
the manufacturer of the computer — and of any additional plug-in-boards — to be used. The authors and the
publisher accept no legal responsibility for any damage caused by improper use of the instructions and
programs contained herein. Although these programs have been tested with extreme care, we can offer no
formal guarantee that they will function correctly. The programs on the enclosed disc are under copyright
protection and may not be reproduced without written permission from Springer-Verlag. One copy of the
program may be made as a back-up, but all further copies offend copyright law.

Typesetting: Camera-ready copy from the editors using a Springer TEX macro package
Cover design: Erich Kirchner, Heidelberg

SPIN 10525808 56/3144 — 54 3 21 0 — Printed on acid-free paper

Preface

Computational physics is the field in physics that has experienced probably
the most rapid growth in the last decade. With the advent of computers, a
new way of studying the properties of physical models became available. One
no longer has to make approximations in the analytical solutions of models
to obtain closed forms, and interesting but intractable terms no longer have
to be omitted from models right from the beginning of the modeling phase.
Now, by employing methods of computational physics, complicated equations
can be solved numerically, simulations allow the solution of hitherto untractable
problems, and visualization techniques reveal the beauty of complex as well as
simple models. Many new and exciting results have been obtained by numerical
calculations and simulations of old and new models.

This book presents samples of many of the facets that constitute computa-
tional physics. Our aim is to cover a broad spectrum of topics, and we want to
present a mixture ranging from simple introductory material including simple
exercises to reports of serious applications. This is not meant to be an intro-
ductory textbook on computational physics, nor is it a proceedings volume of
a research conference. This book instead provides the reader with an overview
of computational physics, its basic methods, and its many areas of application.
Our coauthors lead the reader into new and “hot” topics of research, but the
presentation does not require any specific knowledge of the topics and methods.
We hope that a reader who has gone through the book can appreciate the wealth
of computational physics and is motivated to proceed with further reading.

The topics covered in this book cover a wide spectrum, with a coarse division
into “Monte Carlo” type and “molecular dynamics” type chapters. We start with
discussing random numbers and their generation on computers. Then these ran-
dom numbers are used in a variety of applications, which center around “Monte
Carlo methods”. In these applications the focus is first on classical systems in
physics, chemistry, biology, material science, and optimization. Then quantum-
mechanical problems are investigated by Monte Carlo procedures. On our way
we also encounter quantum chaos and fractal concepts, which are of increasing
importance nowadays. The transition from “Monte Carlo” to “molecular dy-
namics” occurs in the chapter on hybrid methods, which combine elements of
both. Then “molecular dynamics” methods are presented, with fluids and solids
covered. A chapter on finite-element methods follows, and the two final chapters
present principles of parallel computers and associated programming models.

As usual in physics, only active interaction with the matter at hand provides

VI

deep insight, and thus we include a diskette that contains sample programs and
demonstrations to support the interaction of the reader with the text. The sam-
ple programs and demonstrations are selected to provide a glimpse of current
research activities, even though the limitations of the available hardware and/or
the limited patience of some readers might require a reduction in the dimension-
ality or size of the application. Also some exercises are included to further foster
an active use of this book. '

The material in this book is born out of lectures the authors gave at a Her-
aeus Summer School on computational physics at the Technical University in
Chemnitz. The aim of the summer school was the same as the aim of this book:
to give a sampler of the field. Due to the gracious funding by the Dr. Wilhelm
Heinrich Heraeus and Else Heraeus Foundation the editors (see figure) were able
to present two weeks of intense lecturing and “learning by doing” to more than
80 students. We would like t6 use this opportunity to thank the Heraeus Foun-
dation for making the summer school and this book possible.

But most important we like to thank our coauthors for their contributions to
this volume (as well as for their lectures at the summer school). We very much
appreciate their willingness to contribute even under the severe limitations that
their everyday teaching and research activities (and administrative duties) put
on their time. And finally we thank J6rg Arndt, Peter Blaudeck, Andre Fachat,
Goran Hanke, Karin Kumm, Sven Schubert, and Peter Spaht for their technical
help and Springer-Verlag for making this volume a reality.

Chemnitz, December 1995
Karl Heinz Hoffmann and Michael Schreiber

With this original answer to the question “How to measure the height of the building
of the Institut fir Physik in Chemnitz with a computer and a stop watch only?” the
editors give a peculiar interpretation of the topic “Physics with a computer”.

Contents

Random Number Generation*

Dietrich Stauffer 1
1 Introduction 1
2 The Miracle Number 16807 2
3 Bit Strings of Kirkpatrick-Stoll 4
4 A Modern Example 5
5 Problems 6
6 Summary e e e e e 8
References e 8
A Few Exercises with Random Numbers
Peter Blaudeck 9
Monte Carlo Simulations of Spin Systems*
WolthardJanke 10
1 Introduction 10
2 Spin Models and Phase Transitions 11
2.1 Models and Observables 11
2.2 Phase Transitions 12
3 The Monte Carlo Method 17
3.1 Estimators and Autocorrelation Times 18
3.2 Metropolis Algorithm R A A 19
3.3 Cluster Algorithms 20
3.4 Multicanonical Algorithms for First-Order Transitions 25
4 Reweighting Techniques 26
5 Applications to the 3D Heisenberg Model 30
5.1 Simulationsfor T > T,, 31
5.2 Simulationsnear T, 33
6 Concluding Remarks 36
Appendix: Program Codes 39
References e 40

* Software included on the accompanying diskette.

VIII

Metastable Systems and Stochastic Optimization™
Karl Heinz Hoffmann

1 An Introduction to Complex Systems
2 Dynamics in Complex Systems
2.1 Thermal Relaxation Dynamics: The Metropolis Algorithm
2.2 Thermal Relaxation Dynamics: A Marcov Process
2.3 Thermal Relaxation Dynamics: A Simple Example
3 Modeling Constant-Temperature Thermal Relaxation
3.1 Coarse-Graining a Complex State Space
32 TreeDynamics,
3.3 A Serious Application: Aging Effects in Spin Glasses
4 Stochastic Optimization: How to Find the Ground State
of Complex Systems
4.1 Simulated Annealing
4.2 Optimal Simulated Annealing Schedules: A Simple Example . .
4.3 Adaptive Annealing Schedules and the Ensemble Approach
to Simulated Annealing
5 SUMMATY .« v v v v v v e e e e e e e e e e e e
Appendix: Examples and Exercises (with S. Schubert)
References . < o « ¢ s s s + s s sisi s 3 65 6 8 a8 @ E® ¢ 8 2 5 5 &8 805

Modelling and Computer Simulation of Granular Media
Dietrich E: Wolf . . . s ¢« s o s wmmmmamess ¢85 55355 80@ss6s

1 The Physics of Granular Media
1.1 What are Granular Media?
1.2 Stress Distribution in Granular Packing: Arching
1.3 Dilatancy, Fluidization and Collisional Cooling
1.4 Stick-and-Slip Motion and Self-Organized Criticality
(with S: Dippel) + sis s wmwwwm o6 6 558 63 v 5 mamaswe
1.5 Segregation, Convection, Heaping (with S. Dippel)
2 Molecular Dynamics Simulations I: Soft Particles
21 General Remarks
2.2 Normal Force e
2.3 Tangential Force
2.4 Detachment Effect
2.5 Brake Failure Effect (with J. Schifer)
3 Molecular Dynamic Simulations II: Hard Particles (with J. Schafer)
3.1 Event-Driven Simulation
32 Collision Operator « « = + « « s ¢ s 5 s s s v s g e ® s e s s s s s
3.3 Limitations
4 Contact Dynamics Simulations (with L. Brendel and F. Radjai)
41 General Remarks
4.2 Contact Laws and Equations of Motion
4.3 Tterative Determination of Forces and Accelerations

44 Results 89
5 The Bottom-to-Top Restructuring Model 89
5.1 The Algorithm and its Justification (with E. Jobs) 89
5.2 Simulation of a Rotating Drum (with T. Scheffler and G. Baumann) 91
6 Conclusion e 92
References e e 93

Algorithms for Biological Aging*

Dietrich Stauffer 96
1 Introductioni . < s o =6 s s @ & 65 6 ¢ 5 ¢ 5 5 6 8 6 5985 685 5 5 5 ¢ 96
2 Conceptsand Models 97
3 TechiiqUEs . s sim s s v o @@ B @@ 5 6 5+ 6 6 ¥ o so B8 ® EH & 5 8 3 3 98
4 Results e e 99
REIEIENCES : : « « s m m s o w s o s 6% & 5 6 s 5 8 889 @ m@ESs § 5 38 3 101

Simulations of Chemical Reactions

Alexander Blumen, Igor Sokolov, Gerd Zumofen, and Joseph Klafter . . . 102
1 Introduction 102
2 The Basic Kinetic Approach 102
3 Numerical and Analytical Approaches for Reactions Under Diffusion . 104
4 Reactions in Layered Systems 109
5 Reactions Under Mixing 113
6 Reactions Controlled by Enhanced Diffusion 116
References e e 119

Random Walks on Fractals*

Armin Bunde, Julia Drager, and Markus Porto 121
1L Introduction : : « s s m e s s s.6 .6 5 6 5§ 5 6 s s @ s s a6 5 s 121
2 Deterministic Fractals 122
2.1 TheKoch Curveu...... 122
2.2 The Sierpinski Gasket 124
3 Random Fractals G B G SBEE R E 33 124
3.1 The Random-Walk Trail 124
3.2 Self-Avoiding Walks, 125
3.3 Percolation 126
4 The “Chemical Distance” £ 127
5 Random Walkson Fractals 131
5.1 Root Mean Square Displacement R(¢) 131
5.2 The Mean Probability Density 131
6 Biased Diffusion 138
7 Numerical Approaches 140
7.1 Generation of Percolation Clusters 141

7.2 Simulation of Random Walks 142

X

8 Description of the Programs
References L

Multifractal Characteristics of Electronic Wave Functions
in Disordered Systems*
Michael Schreiber e kyy

Electronic States in Disordered Systems
The Anderson Model of Localization
Calculation of the Eigenvectors
Description of Multifractal Objects.
Multifractal Analysis of the Wave Functions
Computation of the Multifractal Characteristics
Topical Results of the Multifractal Analysis
References e

N OO W N -

Transfer-Matrix Methods and Finite-Size Scaling
for Disordered Systems*
Bernhard Kramer and Michael Schreiber

1 Imntroduction
2 One-Dimensional Systems
2.1 The Transfer Matrix
2.2 The Ordered Limit
2.3 The Localization Length
2.4 Resolvent Method
Finite-Size Scaling
4 Numerical Evaluation of the Anderson Transition

4.1 Localization Length of Quasi-1D Systems

4.2 Dependence of the Localization Length on the Cross Section

4.3 Finite-Size Scaling Numerically
5 Present Status of the Results from Transfer-Matrix Calculations . . .
References e

w

Quantum Monte Carlo Investigations for the Hubbard Model*
Hans-Georg Matuttis and Ingo Morgenstern

1 Infroduction. . : : : s s wwms o s mm e m i o 6 5 8 5 85 @ 689855 5.3
1.1 The Hubbard Model
1.2 Whatto Compute
1.3 Quantum Simulations
2 Grand Canonical Quantum Monte Carlo
2.1 The Trotter—Suzuki Transformation
2.2 The Hubbard-Stratonovich Transformation
2.3 The Partition Function
2.4 The Monte Carlo Weight
3 Equal-Time Greens Functions.

3.1 Single Spin Updates 200
3.2 Numerical Instabilities 200
4 History and Further Reading 201
Appendix A: Statistical Monte Carlo Methods 202
Appendix B: OCTAVE i 203
Appendix C:-EXercises oo it e e e 205
References S e e 207
Quantum Dynamics in Nanoscale Devices*
HansDe Raedt i 209
1 Introduction 209
2 Theofy csnsssccmme s s:3 5 s pmeag@Emes 538 888 212
3 DataAnalysis « s csas i : 535 s nasmunmeEms s 5ews 214
4 Implementation 215
5 Application: Quantum Interference of Two Identical Particles 219
References : o s s msmmm e 5 6 5 5 8 3 s s @ s @ mse S @58 58 5 58 ¢a 223
Quantum Chaos
Hans Jiirgen Korsch and Henning Wiescher 225
1 Classical and Quantum Chaos 225
2 Quantum Time Evolution 227
3 Quantum State Tomography 229
3.1 Phase-Space Distributions L. 229
3.2 Phase-Space Entropy oL 230
4 Case Study: A Driven Anharmonic Quantum Oscillator 231
4.1 Classical Phase-Space Dynamics 232
4.2 Quantum Phase-Space Dynamics 232
4.3 Quasienergy Spectra oL 238
4.4 Chaotic Tunneling 239
5 Concluding Remarks, 243
References o v v i i e e e e e e e e e 243
Numerical Simulation in Quantum Field Theory*
Ulli Wolff e e 245
1 Quantum Field Theory and Particle Physics 245
1.1 Particles, Fields, Standard Model 245
1.2 Beyond Perturbation Theory 246
2 Lattice Formulation of Field Theory 247
21 PathIntégral : . : o s amwomommmmn s s = 0 0 69w e wwe s 247
2.2 Lattice Regularization 249
2.3 Field Theory and Critical Phenomena 250
2.4 Effective Field Theory, 251
3 Stochastic Evaluation of Path Integrals 252

3.1 Monte Carlo Method 253

XII

3.2 Metropolis Algorithm for * 254
4 Summary e e e e e 255
Appendix: FORTRAN Monte Carlo Package for o* 255
References e 256

Modeling and a Simulation Method for Molecular. Systems

Dieter W. Heermann e 258
1 Introduction 258
2 Brief Review of the Simulation Method 258
3 Modeling of Polymer Systems 260
4 Coarse-Graining e 261
5 The Monomer Unit 262
6 Bonded Interactions for BPA-PC 263
7 Parallelization of the Polymer System 264
References L e 266

Constraints in Molecular Dynamics, Nonequilibrium Processes
in Fluids via Computer Simulations

Siegfried Hess « w5 s 4 5 ¢ 6 5 5 s 3 s sis s manemaE B E 8 8 ¢ s ¢ @895 268
1 Introduction 268
Basics of Molecular Dynamics 269
2.1 Equationsof Motion 269
2.2 Extraction of Data from MD Simulations 270
3 Potentials, Constraints, and Integrators 270
3.1 Interaction Potential and Scaling 270
32 Thermostats : : s : s ¢ + ¢ s s s e s ow @z 8 & 5 6 5 5 8 & 58 272
3.3 Integrators . : : : s « + s s v s v m s @mu s E @85 § 855 5 8§ s 276
4 Nonequilibrium Phenomena 278
4.1 Relaxation Processes 278
4.2 Plane Couette Flow 280
4.3 Viscosity 281
4.4 Structural Changes 283
4.5 Colloidal Dispersions v v vt 284
4.6 MIXEUTES v i e e e e e e e e e e e e e e 284
5 ComplexFluids . : : : . cso s s o s s o smmms = s 8 88 a0 a0ssos 285
5:1 PolymerMelts . : siw o s s oo memess 5 :6s 5880855 ss 285
5.2 Nematic Liquid Crystals 287
5.3 Ferrofluids and Magneto-Rheological Fluids 290

References o o i i i e e e e e e e e e e e 291

Molecular-Dynamic Simulations
of Structure Formation in Complex Materials
Thomas Frauenheim, Dirk Porezag, Thomas Kohler, and Frank Weich . .

1 Introduction
2 Simulation Methods @ E s e 5 8 F
3 Total Energies and Interatomic Forces
3.1 Classical Concepts v v v v i it i e
3.2 Density-Functional Theory, Car—Parrinello MD
4 Density-Functional Based Tight-Binding Method
4.1 Creation of the Pseudoatoms
4.2 Calculation of Matrix Elements
4.3 Fitting of Short-Range Repulsive Part
5 Vibrational Properties
6 Simulation Geometries and Regimes
6.1 Clusters, Molecules.
6.2 Bulk-Crystalline and Amorphous Solids
6.3 Surfaces and Adsorbates. L.
7 Accuracy and Transferability
7.1 Small Silicon Clusters, Si,
7.2 Molecules, Hydrocarbons
7.3 Solid Crystalline Modifications, Silicon
8 Applications e
8.1 Structure and Stability of Polymerized C¢o
8.2 Stability of Highly Tetrahedral Amorphous Carbon, ta-C
8.3 Diamond Surface Reconstructions
9 SUMMATY o e e e e
References « « s s.o. s s mms w@min @ § 6 ¢ 6 8 3 8 8 S 9968655 § 5 3

Finite Element Methods for the Stokes Equation
Jochen Reichenbach and Nuri Aksel

1 Introduction PR TR I
2 Stokes Equation e
2.1 Conservation Equations
2.2 Function Spaces and Variational Formulation
2.3 Saddle Point Problem
2.4 General Boundary Conditions
20 Examplé s s w s smm s o5 86885 53 3 vumyww@s s s s 8
3 Discretization
3.1 General Formulation
3.2 Finite Elements for Saddle-Point Problems
4 Final Remarks 0 e e e e
References . o o o « 6w o« oo 5 s 6 5 5 s 8 3 5 5 5 4 6§ @ @ s & o ® & 8655 5%

XIII

XI1v

Principles of Parallel Computers
and Some Impacts on Their Programming Models
Wolfgang Rehm and Thomas Radke

Introduction
Overview on Architecture Principles
General Classification T e s o o o
Multiprocessor Systems
Massively Parallel Processor Systems
Multiple Shared-Memory Multiprocessors
Multithreading Programming Model
Message-Passing Programming Model
DUNIHATT « + : s « p v v N B R B R ES BT Y £ 8553 ROBANE & & 3
References . « « « « s « s 5o v s s s @ o 5w s d 5 5 6 8 8 8 2 5 b mim s oo s

© 00~ Ut i W=

Parallel Programming Styles: A Brief Overview
Andreas Munke, Jorg Werner, and WolfgangRehm

1 Introduction
2 Programming Models
21 Definition . : : s v s s s s s mo s 85 @@ E 8 s 5 58 BaEREEE
2.2 Classification
3 Programming a Shared Memory Computer
3.1 The KSR Programming Model
3.2 Levelsof Parallelism
3.3 Program Implementation
34 Examples
4 Programming a Distributed Memory Computer Using PARIX
41 Whatis PARIX
4.2 PARIX Hardware Environment
4.3 Communication and Process Model Under PARIX
4.4 Programming Model Lo
4.5 An Example, PARIX says “Hello World”
5 Programming Heterogenous Workstation Clusters Using MPI
5.1 Imtroduction
5.2 Basic Structure of MPICH
5.3 What Is Included in MPI?
5.4 What Does the Standard Exclude?
5.5 MPI Says “Hello World”
5.6 Current Available Implementations of MPI
6 SUMATY o v e e e e e e e e e e e e e e e
References %3 MER B R GEREEE S i R EENEEEE A

Random Number Generation*

Dietrich Stauffer

Institut fiir Theoretische Physik, Universitdat zu Koln, D-50923 Ko6ln, Germany
e-mail: ?tauffer@thp.uni-koeln.de ’

Abstract. The sad situation of random number generation is reviewed: there are no
good random numbers. But life has to go on anyhow, and thus we explain how to
produce reasonable random numbers efficiently, emphasizing multiplication with 16807
and the Kirkpatrick-Stoll R250 generator.

1 Introduction

Molecular Dynamics and Monte Carlo are the two standard simulation methods
of the last decades. Monte Carlo simulations use random numbers to produce
random fluctuations. Today, they are no longer made at the roulette tables in
Monaco, but on computers. In the good old days, people printed tables of random
numbers from which the user could read them off. This, of course, is somewhat
tedious when simulating a square lattice of size one million times one million,
today’s world record [1]. About a decade ago, computer chips became available
which produced random numbers through the thermal noise of the electrons,
about one number per microsecond. This is not fast enough for many quality
applications. Besides, for testing purposes we would like to have reproducible
random numbers: when we have made a program more efficient without changing
the results, we want to run it again and indeed get exactly the same results,
and not just roughly the same, within the statistical errors of the Monte Carlo
simulations. Moreover, when we switch from one computer to another, we would
like again to get the same results: portability is important. Thus special chips
using thermal noise are not suitable for this purpose.

Also, the random numbers should be produced quickly since Monte Carlo
simulations consume lots of time and we never have enough of it. Thus we need
efficient methods, and on many computers it is very slow to call a function
or subroutine to produce one random number. Thus a good random number
generator should be:

(1) random

(2) reproducible

(3) portable

(4) efficient
Using the built-in random number generator of your computer can make your
program inefficient and nonportable. (Seymour Cray knew what he was doing:

* Software included on the accompanying diskette.

2 Dietrich Stauffer

his random number generators for the good old CDC series or modern Crays
were efficient.) Besides, the user then does not understand what is going on.

Thus we now review why the above criteria are difficult to fulfill and what
to do about it, by programming your own random numbers.

2 The Miracle Number 16807

Linear congruential random number generators multiply the last random integer
by some big factor, add another integer to it, treat the sum modulo some power
of two, and normalize this integer to the interval between zero and unity. This
all sounds very complicated, sometimes is presented in this complicated fashion
in the literature, and may cause you to give up programming your own ran-
dom numbers. Thus simply forget these complications and look at the following
Fortran or Basic statement, which works for most 32-bit machines:

IBM = IBM*16807
(fans of Pascal and C should end this line with a semicolon; and enemies of
International Bussiness Machines may use a different variable name). If you
start with an odd integer for IBM, e.g., through IBM = 2*ISEED-1, then this
single program line should give you, again and again, integers IBM distributed
randomly between —23! and 23!. Just try it out. Why does it work ?

If you multiply two ten-digit integers, the result will be an integer with about
twenty digits and is difficult to obtain by paper and pencil. You may estimate,
however, the leading digit correctly without too much effort. On a computer,
you may not be able to store more then ten digits for each integer. Then most
computers simply throw away, without any error message, the somewhat pre-
dictable leading digits and keep only the ten least significant digits. Of course,
computers work with binary digits (bits) and not with decimal ones, and with
four-byte integers (32 bits) all leading bits beyond the least significant 32 bits
are thrown away if the product of two integers has more than 32 bits. In terms of
decimal numbers restricted to be at most 999, this would mean that the product
of 123 and 899 is not 110577 but merely 577. It is clear that these least significant
digits are difficult to predict, that means for a user they look pretty random.

In your youth you have learned that a*b equals b*a, and that the product of
two positive numbers is again positive. In linear algebra or quantum mechanics
you found out that the first statement was a lie, and now you realize the same for
the second statement: IBM*¥16807 may be negative even when IBM was positive.
The reason is that the first (most significant) bit of an integer indicates the
sign. Thus before the leading bits of the product were thrown away, the product
was positive; but then only the last 32 bits were kept, and the leftmost (most
significant) bit may be zero (positive 32-bit number) or one (negative 32-bit
number). So, plus times plus is minus, in about half the cases.

Some ancient DEC computers may not have liked this overflow above the 32-
bit limit, but otherwise I am not aware of computers where the above Fortran
statement causes trouble. Thus we have not only an efficient one-line random
number generator, but also a portable one.

Random Number Generation 3

If for some reason you want only positive random numbers IBM, then you
have to add 23! to them if they are negative. This number 23! is too large to
handle for the 32-bit computer, but 231 — 1 = 2147483647 is fine. Thus try

IF(IBM.LT.0) IBM = IBM + 2147483647 + 1

and it works if the computer is too stupid to find out that you really want to
add 23! :

If you want to normalize this number to the interval between 0 and 1, you
multiply a positive random integer by 273! = 4.656612 x 10~1°. If they are both
positive and negative, use

Z = 0.5+2.328306 E-10 * IBM

to get a random number z between 0 and 1. Of course, this normalization from
an integer to a real number costs a lot of computer time; you could do it faster
by learning how a floating point number is stored in your computer and then
constructing one via bit operations treating the random integer as a bit string
for the mantissa.

However, in most cases this normalization is not needed, and you may stay
within integer arithmetic. For example, some command GOTO 1 should be exe-
cuted with probability p. Normally this is done with

IF(Z.LE.P) GOTO 1
requiring a random number between 0 and 1. This normalization is avoided by
IF(IBM.LE.IP) GOTO 1

provided you have defined once (and not millions of times, i.e., for each random
number) the variable IP = 2147483648.0%(2.0%*P-1.0)

IF(P.GT.0.999) IP=2147483647
IF(P.LT.0.001) IP=-2147483648

which varies between —23! and 23!. Now the computer runs faster. (The last two
7if” statements are precautions, seldomly needed, in case rounding errors cause
trouble in the conversion to integers if p = 0 or = 1.)

The number 16807 = 7° is not entirely arbitrary; historically earlier was
65539, and 65549 has also been used. So you may mix them, using in most of
your program lines multiplication with 16807, but sometimes also 65539. Do not
try to produce different samples just by changing the multiplicator from 16807
to 16809, then 16811, and so on. Also, your IBM numbers must always be odd
integers; to be safe I start with an integer ISEED and then state once IBM =
2xISEED-1, as mentioned already above.

If you simulate at zero temperature (see Sect. 4), then the probabilities are
0, 1/2, and 1 only. With integer random numbers IBM varying between —231
and +23! the conditions and Boltzmann integers then have to be formulated
exactly as stated above (not IBM .LT. IP for example), to avoid a spin flipping
when it should not flip. With floating point random numbers you need double
precision real*8. This detail may be important for the fraction of frozen spins in
spin glasses [7].

4 Dietrich Stauffer

3 Bit Strings of Kirkpatrick—Stoll

The principle of Tausworth shift generators has been around for a long time but
physicists started to use it mainly after Kirkpatrick and Stoll made it popular
in a physics journal [2]. For many years it was regarded as superior to multi-
plication with 16807; this is no longer true but at least it offers a completely
different alternative. It requires bit-manipulation functions which had not yet
been standardized before Fortran 90 (they are part of the C language standard)
and which were initially demanded by the Pentagon for signal analysis.

Imagine you have two 32-bit integers M and N. Then the exclusive-or oper-
ation puts a bit equal to one if and only if the two corresponding bits in M and
N are different; otherwise exclusive-or puts this bit to zero. Thus this bit-by-
bit exclusive-or IEOR(M,N) (Cray called it M.xor.N but unfortunately this did
not become the standard) treats 32 bits in parallel and does for each of these
bits what a logical operation would do for one bit only with logical (Boolean)
variables. Obviously such bit-handling operations can be used in lots of prob-
lems where the essential information consists of independent bits, such as in
Ising models or cellular automata where it is called multispin coding [3]. Fortran
manuals usually hide these tricks in an appendix on the functions which the
compiler has stored.

Imagine you have an array of 250 integers N consisting of completely ran-
dom bits. Then the next integer N(251) is produced via N(251) = IEOR(N(1),
N(148)) and generally

N(K) = IEOR(N(K-250), N(K-103))
where again 250 and 103 are magic numbers which should not be changed. An
alternative choice is the simple subtraction

N(K) = N(K-250) - N(K-103)
but this is less widespread than the exclusive-or method, also called R250.

To work with it we first need 250 random integers. It is not recommended
to take the results of IBM*16807 directly as such integers since the last bits are
not random enough; for example the least significant bit is always one since IBM
is always odd. Instead we set a bit in N equal to one if and only if the result of
IBM*16807 is negative. Thus our 32-bit integers N are initialized through

DO K = 1, 250

ICI=0

DO I=1,32

ICI=ISHFT(ICI,1)

IBM=IBM*16807

IF(IBM.LT.0) ICI=ICI+1

ENDDO

N(K)=ICI

ENDDO
Here again ISHFT is a bit-manipulation function shifting the first argument by
one bit to the left. Instead of ICI=ICI+1, one could also have used a bit-by-bit
or-function ICI=I0R(ICI,1); on most compilers integer and bitstring operations

