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Preface

The Markov Chain Monte Carlo (MCMC) method is rooted in the work of
physicists such as Metropolis and von Neumann during the period 1945-55
when they employed modern electronic computers for the simulation of some
probabilistic problems in atomic bomb designs. After five decades of continual
development, it has become the dominant methodology in the solution of
many classes of computational problems of central importance to science and
technology.

Suppose that one is interested in simulating from a distribution with the
density/mass function given by f(z) ox exp{—H(z)/t}, = € X, where H(z) is
called the energy function, and ¢ is called the temperature. The Metropolis
algorithm (Metropolis et al., 1953) is perhaps the first sampling algorithm
for iterative simulations. It has an extremely simple form. Starting with any
point zo € &, it proceeds by iterating between the following two steps, what
we call the proposal-and-decision steps:

1. (Proposal) Propose a random ‘unbiased perturbation’ of the current
state x; generated from a symmetric proposal distribution T'(z;, ), i.e.,

T(xt! y) = T(y7 xt)'

2. (Decision) Calculate the energy difference AH = H(y) — H(x;). Set
Ti+1 = y with probability min{1,exp(—AH/t)}, and set z;y; =
with the remaining probability.

This algorithm was later generalized by Hastings (1970) to allow asymmetric
proposal distributions to be used in generating the new state y. The gener-
alized algorithm is usually called the Metropolis-Hastings algorithm. A fun-
damental feature of the Metropolis-Hastings update is its localness, the new
state being generated in a neighborhood of the current state. This feature
allows one to break a complex task into a series of manageable pieces. On the
other hand, however, it tends to suffer from the local-trap problem when the
energy function has multiple local minima separated by high energy barriers.
In this situation, the Markov chain will be indefinitely trapped in local en-
ergy minima. Consequently, the simulation process may fail to sample from
the relevant parts of the sample space, and the quantities of interest cannot
be estimated with satisfactory accuracies. Many applications of the MCMC
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method, such as protein folding, combinatorial optimization, and spin-glasses,
can be dramatically enhanced by sampling algorithms which allow the process
to avoid being trapped in local energy minima.

Developing MCMC sampling algorithms that are immune to the local-
trap problem has long been considered as one of the most important topics
in MCMC research. During the past two decades, various advanced MCMC
algorithms which address this problem have been developed. These include:
the Swendsen-Wang algorithm (1987); parallel tempering (Geyer, 1991;
Hukushima and Nemoto, 1996), multicanonical Monte Carlo (Berg and
Neuhaus, 1991, 1992); simulated tempering (Marinari and Parisi, 1992;
Geyer and Thompson, 1995); dynamic weighting (Wong and Liang, 1997; Liu
et al., 2001; Liang, 2002b); slice sampler (Higdon, 1998; Edwards and Sokal,
1988); evolutionary Monte Carlo (Liang and Wong, 2000, 2001b), adaptive
Metropolis algorithm (Haario et al, 2001); the Wang-Landau algorithm
(Wang and Landau, 2001; Liang, 2005b); equi-energy sampler (Kou et al.,
2006); sample Metropolis-Hastings algorithm (Lewandowski and Liu, 2008);
and stochastic approximation Monte Carlo (Liang et al., 2007; Liang, 2009b),
among others.

In addition to the local-trap problem, the Metropolis-Hastings algorithm
also suffers from the inability in sampling from distributions with the mass/
density function involving intractable integrals. Let f(z) o c¢(z)¥(z), where
c(x) denotes an intractable integral. Clearly, the Metropolis-Hastings algo-
rithm cannot be applied to simulate from f(x), as the acceptance probability
would involve the intractable ratio c(y)/c(z), where y denotes the candidate
sample. To overcome this difficulty, advanced MCMC algorithms have also
been proposed in recent literature. These include the Mgller algorithm
(Mgller et al., 2006), the exchange algorithm (Murray et al., 2006), the
double Metropolis-Hastings algorithm (Liang, 2009¢; Jin and Liang, 2009),
the Monte Carlo dynamically weighted importance sampling algorithm
(Liang and Cheon, 2009), and the Monte Carlo Metropolis-Hastings sampler
(Liang and Jin, 2010), among others.

One common key idea behind these advanced MCMC algorithms is
learning from past samples. For example, stochastic approximation Monte
Carlo (Liang et al., 2007) modifies its invariant distribution from iteration
to iteration based on its past samples in such a way that each region of
the sample space can be drawn from with a desired frequency, and thus
the local-trap problem can be avoided essentially. The adaptive Metropolis
algorithm modifies its proposal distribution from iteration to iteration based
on its past samples such that an “optimal” proposal distribution can be
achieved dynamically. In the dynamic weighting algorithm, the importance
weight carries the information of past samples, which helps the system move
across steep energy barriers even in the presence of multiple local energy
minima. In parallel tempering and evolutionary Monte Carlo, the state of the
Markov chain is extended to a population of independent samples, for which,
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at each iteration, each sample can be updated based on entire samples of the
current population. Hence, parallel tempering and evolutionary Monte Carlo
can also be viewed as algorithms for learning from past samples, although
they can only learn within a fixed horizon.

Meanwhile, many advanced techniques have been developed in the lit-
erature to accelerate the convergence of the Metropolis-Hastings algorithm
and the Gibbs sampler; the latter can be viewed as a special form of the
Metropolis-Hastings algorithm, with each component of the state vector be-
ing updated via a conditional sampling step. Such techniques include: blocking
and collapsing (Liu et al., 1994); reparameterization (Gelfand et al., 1995); pa-
rameter expansion (Meng and van Dyk, 1999; Liu and Wu, 1999); multiple-try
(Liu et al., 2000); and alternating subspace-spanning resampling (Liu, 2003),
among others.

The aim of this book is to provide a unified and up-to-date treatment of
advanced MCMC algorithms and their variants. According to their main fea-
tures, we group these advanced MCMC algorithms into several categories. The
Gibbs sampler and acceleration methods, the Metropolis-Hastings algorithm
and extensions, auxiliary variable-based MCMC algorithms, population-
based MCMC algorithms, dynamic weighting, stochastic approximation
Monte Carlo, and MCMC algorithms with adaptive proposals are described
in Chapters 2-8. Chapter 1 is dedicated to brief descriptions of Bayesian
inference, random number generation, and basic MCMC theory. Importance
sampling, which represents another important area of Monte Carlo other
than MCMC, is not fully addressed in this book. Those interested in this
area should refer to Liu (2001) or Robert and Casella (2004).

This book is intended to serve three audiences: researchers specializing in
Monte Carlo algorithms; scientists interested in using Monte Carlo methods;
and graduate students in statistics, computational biology, engineering, and
computer sciences who want to learn Monte Carlo methods. The prerequisites
for understanding most of the material presented are minimal: a one-semester
course on probability theory (Ross, 1998) and a one-semester course on statis-
tical inference (Rice, 2007), both at undergraduate level. However, it would
also be more desirable for readers to have a background in some specific
scientific area such as Bayesian computation, artificial intelligence, or compu-
tational biology. This book is suitable as a textbook for one-semester courses
on Monte Carlo methods, offered at the advanced Master’s or Ph.D. level.

Faming Liang, Chuanhai Liu, and Raymond J. Carroll
December, 2009
www.wiley.com/go/markov
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Chapter 1

Bayesian Inference

and Markov Chain
Monte Carlo

1.1 Bayes

Bayesian inference is a probabilistic inferential method. In the last two
decades, it has become more popular than ever due to affordable computing
power and recent advances in Markov chain Monte Carlo (MCMC) methods
for approximating high dimensional integrals.

Bayesian inference can be traced back to Thomas Bayes (1764), who de-
rived the inverse probability of the success probability 6 in a sequence of
independent Bernoulli trials, where § was taken from the uniform distribu-
tion on the unit interval (0, 1) but treated as unobserved. For later reference,
we describe his experiment using familiar modern terminology as follows.

B Example 1.1 The Bernoulli (or Binomial) Model With Known Prior

Suppose that 6 ~ Unif(0, 1), the uniform distribution over the unit interval
(0,1), and that z1,...,z, is a sample from Bernoulli(f), which has the
sample space X = {0,1} and probability mass function (pmf)

Pr(X=1/0)=0 and Pr(X=0/¢)=1—4, (1.1)

where X denotes the Bernoulli random variable (r.v.) with X = 1 for
success and X = 0 for failure. Write N = """ x;, the observed number of
successes in the n Bernoulli trials. Then N|6 ~ Binomial(n, §), the Binomial
distribution with parameters size n and probability of success 6.
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