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Foreword

With the rapid advances in microfabrication technology in recent years,
physical behaviours that are in between the macroscopic classical picture and the
pure quantum nature on the molecular level became increasingly apparent. This
regime has been popularized in the field of condensed matter physics as the
"mesoscopic” regime. Among the mesoscopic effects that have been observed at low
temperatures are a variety of transport phenomena in small metallic samples and
semiconductor hetero-structures assigned to quantum coherence, dissipative
influences in macroscopic systems ranging from Josephson devices to interstitials in
metals, and tunneling phenomena of single electrons and Cooper pairs in small
capacitance junctions and junction arrays. The importance of quantum fluctuations
in the understanding of such systems is now well established.

The objective of this Adriatico Research Conference was to bring together
physicists working in the various sub-fields of mesoscopic physics and to review the
status of research in this rapidly developing field with emphasis on current
advances and future possibilities. The Conference covered a wide spectrum
including quantum transport in small samples, macroscopic quantum tunnelling
and quantum coherence, charging effects in tunnel junctions, and correlated charge
transfer and quantum vortices in junction arrays. Experimental review talks were
given in each of these fields. The emphasis, however, was put on the theoretical
understanding of the new phenomena observed. The authors were asked to ensure
that their contributions were at a level which would be accessible to graduate
students and to non-specialists in their field. This volume should therefore be of
use to all those whose work impinges on any part of mesoscopic physics.

It is a pleasure to thank Mrs. Milena Poropat who helped us in the

organisation of the Conference and in the completion of this book. We are
particularly grateful to ICTP, SISSA and IBM for their financial help.

The Editors.
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QUANTUM THEORY OF TRANSPORT
IN MESOSCOPIC SYSTEMS

Bernhard Kramer
Physikalisch-Technische Bundesanstalt
Bundesallee 100, 3300 Braunschweig, F. R. Germany
and
Jan Masek
Institute of Physics, Czechoslovak Academy of Sciences
Na Slovance 2, 180 40 Prague, Czechoslovakia

Abstract

The linear response theory for the electrical AC-conductance of meso-
scopic systems is formulated, and applied to quasi-one dimensional quan-
tum wires. The influence of disorder on the average of the conductance is
discussed. The transition from non-universal to universal conductance fluc-
tuations with increasing disorder is studied. Several predictions concerning
the frequency dependence of the conductance and its statistical properties
are made. The role of phase breaking processes is investigated.

1 Introduction

In classical (linear) transport theory the electrical behavior of a system can be character-
ized by the electrical conductivity that depends on various internal and external system

parameters
oc=0(w,T,B,Ep,W--) 1)

(w frequency, T temperature, B magnetic field, Ep Fermi energy, W disorder), but is
independent of the geometry. Surface and boundary effects are completely neglected. The
relation between the total current and the voltage is given by Ohm’s law, I = T'U, where I’
is the electrical conductance related to the conductivity by the simple geometrical relation

I'=oA/L (2)

where A and L are the cross-sectional area perpendicular, and the length of the system
parallel to the current, respectiviely. In order to obtain the conductivity a microscopic
theory is needed. The simplest is the well-known Drude approach which essentially replaces
the conductivity by a relaxation time 7. Its validity is restricted to metallic systems where
the electron density is high and the electrons are scattered many times within the bulk.
At low temperatures inelastic (phase randomizing) processes, due to electron-phonon
scattering, for instance, are frozen out. The inelastic scattering time 7; becomes large.
The mean free path between two inelastic scatterings can exceed the sample size L. In



this regime the transport is governed by the quantum states in the system as a whol
As a consequence, the electrical transport properties of small conductors exhibit a ri
variety of quantum phenomena [1]. They are related to the coherence of the electron stat
throughout the whole sample, to their statistical nature induced by the disorder, and °
finite size quantization . For the theoretical description of these mesoscopic effects o1
needs (i) information about the single particle quantum states in finite, but not atomic(!
systems in the presence of disorder, (ii) a suitable transport theory that includes the effe
of contacts and leads, and (iii) a theory that allows to include the influence of interactios
on the states, and on the transport processes.

The theory of the single particle states is comparatively simple. It requires essential
the solution of a Schrédinger equation under certain boundary conditions. By mea:
of modern computational facilities this is possible even in the presence of disorder fi
surprisingly large system sizes [2].

More complicated is the development of the transport theory. Two approaches ha
been considered. Most important was the discovery that in the quantum coherent regin
the transport properties of a sample must be characterized by size and shape depende:
conductances or resistances, instead of using the geometry independent components of
local, size and shape-independent conductivity or resistivity tensor. It was Landauer [J
who first pointed out in the context of one-dimensional (1D) disordered conductors th:
in the DC-limit coherent transport can be related to quantum mechanical transmissio
In his approach, phase randomization is excluded completely from the "sample” whic
is considered as only a part of a larger system containing in addition “reservoirs”, an
"ideal leads” that connect the "reservoirs” with the "sample” (Fig. 1). The former ai
characterized by their chemical potentials and simulate the "world” behind the contact
The driving forces for the currents are the differences in the chemical potentials. A
inelastic and phase randomizing processes necessary for energy and phase relaxation ai
incorporated into the "reservoirs” . The (random) potential that represents the ”sample
scatters the electrons only elastically. Landauer’s approach has not only been conceptuall
extremely useful. In addition, it provided an excellent scheme for the explanation of tt
transport features of 2D ballistic point contacts, and certain aspects of the quantized Ha
effect [4].

On the other hand, quantum mechanical linear response theory relates the local currer
density f, and the electric field E via the non-local conductivity tensor (Fig. 2).

(7)) = / d®r'dt'o(F,1; 7' ) E(F', 1)

Together with a suitable Hamiltonian Equ. (3) should be able to provide the gener:
microscopic framework for the quantum transport theory of coherent systems. Thu
the Landauer theory, since it is linear, must follow from linear response for the prope
geometry as a special limiting case. In the DC-limit the conditions for the equivalenc
was discussed by several authors [5, 6, 7, 8, 9, 10, 11]. We will not repeat here the variot
arguments. We only mention a few facts that strongly motivate the reformulation [12, 13
and the application, of linear response theory for mesoscopic, i.e. quantum coherent bt
macroscopic systems.

Since it starts from time-dependent currents and fields it can be used for systemati
studies of frequency and time dependencies. As a microscopic theory it allows, at least i



‘igure 1: Disordered sample of arbitrary shape connected to ideal leads. The leads serve
o define the "transport channels” (C). Within the sample (S), the transport channels are
1ixed with cach other via the scattering induced by the disorder. In the Landauer theory
i is assumed that the chemical potentials u; differ in the reservoirs (Ry,R2) attached to
he left and to the right hand sides of the sample via the leads.

rinciple, to discuss the influence of all of the scattering processes (inelastic and elastic)
m an equal (microscopic) footing. It provides the framework for the identification of
he "transport channels” in the Landauer theory. The quantum mechanical transmission
rrobability amplitudes of the channels can be calculated microscopically. In addition it
an straightforwardly be generalized to discuss non-linear mesoscopic effects [14, 15].

Most diflicult is the inclusion of the phase and energy randomizing processes. Although
hey can be treated microscopically, in principle, for instance by diagrammatic techniques
16], it turned out to be extremely complicated in practice. For most purposes it suffices
o consider these processes to be incorporated into an inelastic scattering lime 1y, that
lcpends on the temperature[16, 17, 18]. If the temperature is low enough such that this
mean time between two successive inelastic events” is of the order of or larger than
he characteristic travelling time of an electron through the sample, quantum transport
thenomena will become experimentally accessible.

In this paper, we want to reformulate the linear response theory for the time-dependent
ransport in quantum mechanically coherent systems. First we consider the zero tempera-
hire limit, and neglect phase and energy randomization completely. Results for a quasi-1D
. tem are reported. On the one hand, they provide insight into the microscopic nature of

“transport channels” discussed in the context of the Landauer approach, and, on the

‘~r hand, they allow for some predictions concerning the frequency dependence of the
onductance for systems without and with a perturbing (random) potential. In a simple
nodel we shall also consider the influence of phase randomization.

} Linear Response for AC-Conductance

[he linear response expression for the conductance is obtained straightforwardly in the
isual way. Startpoint is the Hamiltonian

H=Hg - / dPFA(T, 0)(7). (4)

Cheinfluence of the (inhomogeneous) electric field is included linearly via the vector poten-
ial, E(7,t) = 0A/dt. The current density operator is defined as j = (e/2m)[p, §(7 — )]+,



Figure 2: Disordered sample of arbitrary shape connected to ideal, quasi-1 D leads. The
sample may be represented by a potential that includes not only the ”internal” disorder
due to impurities, for instance, but also the geometrical shape. The leads are assumed to be
ideal quasi-1 D far away from the sample, not containing any randomness, and to have some
finite, asymptotically constant cross-section. They serve to define the ”transport channels”
that can be shown to be related to the asymptotically free, geometrically quantized quasi-
1D electron states. In the linear response theory it is assumed that the electric field is
non-zero only within the sample.

p = —thd;. For a monochromatic field the vector potential is
. i = o
F1) = —i(w+in)t
A7 1) = 5o Ee (5)

The small imaginary part of the frequency, i7n, guarantees the vanishing of the electric
field for t — —oo. The dissipative conductance I'(w), in units of e2/h, is defined by the
absorbed power

1 - = e?
Pw) = 3 [ 750 B = 7@ (6)

where U = [ dF- E(i") is the applied voltage. Calculating the current density as a function
of the electric field in linear approximation one obtains the conductivity as

otwir,7) = [ap LE=L 220 B) = JEX ) 547,77 (1)
where f(E) is the Fermi distribution function, and
oo(E; 7, 7') = RTr{8(E + hw — Ho)j (F")6(E — Ho)j (M} 8)

is the conductivity tensor at T = 0. Using Equ.’s (6) and (7) the conductance is obtained
from

T(w) = %2- / £ / B B(7) - o(w; 7 7) - B(F) 9)

Assuming that the electric field is homogeneous within a certain region { of the length L
in the direction of E, say the z-direction, we obtain

h - o = 53
Mw) = W/ﬂd%/ndsr'a(w;r,r') (10)



In general, the AC-conductance depends on the spatial behavior of the clectric field. It
is only in the DC-limit where it can be defined independent of the field due to current
conservation in the leads [5, 7]. The well-known result for a sample connected with two
leads is

2
r0) = (%) _lim_TrilGH(Esz, ) ()

where E is the Fermi energy, k the wave vector of the asymptotically free states in the
leads at the Fermi energy, and G = (z — Hg)~! the one-electron Green’s function subject
to frec boundary conditions for z,z’ — oco. The trace is taken over the (asymptotically
free) states at the Fermi energy that are characterized by k. They correspond to the
transport channels in the Landauer theory. Generalizations to the multi-lead case can be
found in [12, 13].

In order to proceed with the evaluation of the frequency dependence it is necessary to
discuss the properties of the eigenfunctions of Hg in more detail.

3 AC-Conductance of Quantum Wires

Some of the most important properties of quantum AC-transport become transparent
when we consider independent electrons in an ideal "quantum wire” of the length L (— o0)
in the z-direction (periodic boundary conditions), and of a constant finite width M in the
perpendicular directions. The ”"sample” can then be defined by adding to the Ilamiltonian
an additional potential that describes the influence of the impurities, and of the geometrical
shape. Without potential we consider the portion of the quantum wire containing the
applied electric field as the "sample”. The eigenvalues and eigenstates of the Schrodinger
equation for the ideal quantum wire are

h2k?
Eu(") - Eu + Wa (12)
Yok = du(y, 2)‘3‘*1.- (13)

Due to the geometrical constriction of the motion of the electrons perpendicular to the z-
direction the spectrum consists of well separated quasi-1 D energy bands. In the presence of
a periodic potential which may be taken into account by using a tight binding Ilamiltonian
with nearest neighbor coupling matrix element V, the general structure of the spectrum
and the wave functions is the same. Ilowever, in this case 12k?/2m has to be replaced by
2V cos k, and e'** by > e'*1(z|j) where |j) are the states associated with the lattice sites.

In the presence of a magnetic field the motions in the z- and in the perpendicular
directions do no longer decouple. The shape of the energy bands and the corresponding
wave functions are more complicated, although the changes remain small as long as the
cyclotron energy is small compared with the distance between two successive energy bands
(Fig. 3). A moderate perturbing potential (disorder, boundaries) introduces strong mixing
of the bands apparent ncar the onsets E, due to the associated van Hove singularities in
the density of states [19, 20, 21]). As mentioned above, the quasi-1 D subbands define the
"transport channels” occurring in the Landauer approach: at zero temperature transport
takes place only in states with wave-vectors that correspond to intersections of the band



energy

wavevector state density

Figure 3: Quasi-1D energy bands (in units of V, the nearest neighbor matrix element of the
Hamiltonian) of a tight binding system of the width M in the presence of a perpendicular
magnetic field of the strength B = a¢g ($o magnetic flux quantum).

structure E,(k) with the Fermi energy Er. A given 1D subband may correspond to
scveral channels depending on its shape (Fig. 3).

For Bloch waves in the z-direction (ideal system without perturbing potential) the non-
local conductivity may be evaluated explicitly [23]. The frequency dependent conductance
is given by the Fourier transform of the auto-correlation function of the field, L(q) =

[ dzda'E(z)E(z + 2')e'=".

Iw) = 2% (14)

v, = [2(EF — E,)/m]"/? is the Fermi velocity in the uth subband. ftece is the total number
of the occupied channels.

The linear response expression for the conductance of a coherent quasi-1D quantum
system shows several interesting general features that are very important for the under-
standing of the experiments [19, 20, 21, 23, 24, 25, 27].

1. For an ideal system (without perturbing potential) the conductance may be written
as a sum of the contributions of independent transport channels. This remains true
even in the presence of a homogencous magnetic field.

2. The single contributions to the conductance of the individual subbands scale as
(sin(z)/z)?, © = wL/2v,, if the clectric field is assumed to be homogeneous within



an interval of the length L and zero outside.

3. In genceral the conductivity tensor is non-local in space and time. The conductance
depends on the geometry in a non-trivial way. Ior instance, not only narrowing
but also widening of a system locally may decrease its conductance in the coherent.
regime.

4. The AC-conductance depends on the spatial shape of the electric field (Fig. 4). In
order to predict the result of an experiment one would have to know the spatial
dependence of the field in the sample, i. e. one would have to consider interaction
effects and screcning.

5. In the DC-limit only the applied voltage is of importance. Ior the ideal quasi-1D
system the DC-conductance is quantized and given by (e?/A)uoc. independent of the
length of the system, and of the spatial behavior of the electric field (Fig. 5). This
shows explicitely the equivalence of the Landauer theory to linear response in the
DC-limit since the single channel transmission probabilities are equal to one without
inter-channel scattering and disorder.

4 Influence of a Perturbing Potential on DC Transport

Perturbing potentials may have various physical origins. Impurities, defects, dislocations,
and surface roughness lead unavoidably to a certain degree of disorder in any real sample.
Also the man-made shape of a sample may be represented by some additional potential
cnergy. In order to compare with experiments it is necessary to study the influence of these
perturbations on the conductance. ITere we consider only the case of a random potential.
Figure 6 shows the average of the DC-conductance as a function of the Fermi energy of
a quasi-1 D tight binding system subject to a random potential energy that is distributed
according to a box distribution of a width W [20]. The average conductance is still
quantized, although the unit of quantization (heights of the steps) is smaller than e?/h.
Due to the disorder, the conductance fluctuates within the statistical ensemble. The square
root of the variance (rms) of the conductance fluctuations, AT, are shown as vertical bars
in the figure. As can be seen from the insert, approximate quantization persists as long
as AT does not exceed the average step height which happens here at W =V (V is the
off-diagonal matrix element of the Ilamiltonian-between nearest neighbor lattice sites). At
the onset of each of the plateaus one observes a sharp anti-resonance like quenching of the
conductance which can be attributed to an enhancement of the impurity scattering due
to the van Ilove singularities in the density of states at the onsets of the 1D subbands.
The width of the anti-resonances increases with increasing disorder and length of the
sample. instead of quantized plateaus the conductance shows a non-monotonous increase
with regular oscillations. The eflect predicted in [20, 21, 22] has been observed in recent
experiments on narrow constriclions prepared on materials with lower mobility [25, 26].
The behavior of the fluctuations of the conductance is shown in more detail in Fig. 6
where we have plotted rms(T') of a tight binding system with randomness W, of the width
M, and of the length L for different Fermi energies as a function of W+/L [27]. First
of all, we observe that rms(T') scales as a function of W+/I. Secondly, for W+/T < 2,
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Figure 4: Spatial dependence of the electric field (left), auto-correlation function (middle),
and the corresponding frequency dependence of the conductance (right). In model (d) it
was assumed that the states within the two intervals of non-vanishing clectric field are

Electric Field

Electric Field

coherent, whereas in case (e) they were incoherent.
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