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PREFACE

Apart from their well-known technological applications, field, thermionic, and
secondary electron emission can be and are often used as spectroscopies, i.e., as a
means of investigating the electronic properties of the emitting surface. It is the
aim of this book to present the theory of field, thermionic, and secondary electron
emission spectroscopies from a unifying point of view and to demonstrate the
applicability of the theory to the analysis of electron emission data from individual
surfaces. The book is reasonably self-contained, although certain sections require
some knowledge of the quantum theory of scattering, and may serve as an intro-
duction to the subject. At the same time it presents a report on recent advances
which will be of interest to the specialist.

The traditional theory of field and thermionic emission, based on the free-
electron model for metals, its applications, and its limitations, are discussed in
Chapters 1 and 2. Those aspects of the theory of solids and their surfaces which
are necessary for a quantitative theory of field, thermionic, and secondary electron
emission spectroscopies are discussed in Chapters 3 and 4. The theory of these
spectroscopies and discussion of relévant experimental data takes up the remaining
six chapters of the book.

It is assumed, unless otherwise explicitly stated, that the emitting surface is
a single-crystal plane. In the case of field emission from adsorbate-covered metal
surfaces (Chapter 6) or field emission through singly adsorbed atoms (Chapter 7)
it is assumed that the substrate surface is a single-crystal plane of the metal under
consideration. It is also assumed that the emitted current density is sufficiently
small, so that the space charge in front of the emitting surface is negligible.

A research grant from the Leverhulme Trust covering expenses relating to
the preparation of this book is gratefully acknowledged.

A. Modinos
Unuversity of Salford
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CHAPTER ONE

ELECTRON EMISSION
FROM FREE-ELECTRON
METALS

1.1. THE FREE-ELECTRON THEORY OF METALS

The free-electron theory of metals proposed by Sommerfeld (1928) has pro-
vided the basis for practically all quantum-mechanical theories of electron emis-
sion from metals until relatively recently, and some important formulas derived
on the basis of this theory are still extensively used in the analysis of relevant
experimental data. It is, therefore, appropriate to begin our present study with a
brief exposition of the free-electron theory of these phenomena. At the same time
we shall point out the limitations of this theory which have become evident by the
accumulation of experimental data which it cannot explain.

The free-electron theory of metals is based on the assumption that the con-
duction band electrons behave, effectively and for many practical purposes, as if
they were free particles. In this model the electron states (in the conduction band)
are described by plane waves

1
(r) = E,—Z exp (tk - r) (1.1)

where L> = V is the volume of the metal, which is assumed to be very large, and
k (the wave vector) is given by

2w
k = 7 (nny,n.) (1.2)

where n,,n,,n, are positive or negative integers. The energy of the electron in the
state Y is given by

E. = h’k*/2m (1.3)
where the zero of energy coincides with the bottom of the conduction band. For a

1



2 CHAPTER ONE

complete description of an electron state we must also specify the spin orientation
of the electron. For given k we have two states (spin up, spin down) with the same
spatial wave function [given by Eq. (1.1)]. Having this in mind and letting L go
to infinity we find that the number of electron states per unit volume with energy
between E and E + dE is given by

2 E+dE
p(E) dE = = J f f &k (1.4a)
e 7
=53 (%) EV2 4E (1.4b)
e

The probability of an electron state with energy E being occupied (at equi-
librium) is given by the Fermi-Dirac distribution function

1
M) = exp (& = En/ksT] e

where kp is Boltzmann’s constant, 7 is the absolute temperature, and Ep is the
Fermi level. The latter is determined by the requirement

J; p(E)(E) dE = N, (1.6)

where N, is the number of conduction band electrons per unit volume and it is in
effect an empirical parameter. For a metal, E is practically independent of tem-
perature (see, e.g., Peierls, 1955) and can, in most cases, be replaced by its value
at 7" = 0. The latter is given by

hZ
Ep= Py (372N,)*? 1.7)

Apart from the above general formulas we shall, for the subsequent devel-
opment of the theory of electron emission, require an expression for the number
of electrons which, under equilibrium conditions, cross a unit area (we shall
assume without any loss of generality that this is parallel to the xy plane) from
left to right, per unit time, with total energy between E and E + dE and normal
energy, defined by

h’k>

2m

W =

(1.8)
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between W and W + 4dW. We denote this quantity by N(E, W) dE dW. We
have

N(EW) dE dW = iE,), fjf v, dk (1.9)
(2m)’
(E.W)
where
1 0E,  hk,
== - 1
“Thok, m (1.10)

is the velocity of the electron normal to the unit area under consideration, and
{E,W} indicates that only states with total energy between E and E + dE and
normal energy between W + dW corresponding to v, > 0 are to be included in
the integration.

One can easily show that

m

N(E,W) dE dW =
(EH) 2rth’

AE) dE dW (1.11)

1.2. SCATTERING BY ONE-DIMENSIONAL BARRIERS

Consider a potential barrier V(z) such as the one shown in Fig. 1.1. Let an

electron with total energy E and wave vector k;, = (k,,k,) be incident on this
N
>
Vp
v
v
‘R
2 —
FIGURE 1.1

One-dimensional potential barrier.
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barrier from the left. The electron will be partly reflected by the barrier and partly
transmitted through it. We can calculate the reflection and transmission coef-
ficients, as defined by Egs. (1.17) and (1.18), as follows. Since the potential
depends only on the z coordinate, the electronic wave function has the form

Y = %I ly(z) (1.12)
where r; = (x,y) and u(z) satisfies the following equation:
h? d*u
T om 4 + V(2)u = Wu(z) (1.13)

where the normal energy W = E — h%k? /2m > V; and may lie above or below
the top of the barrier, denoted by V, in Fig. 1.1. In the region of constant potential
(V' = Vp) to the right of the barrier the wave function has the following form:

u(z) = Cexp (iggz) (1.14)

with
2 1/2
m
qr = [F(W_ VR)]

which represents a transmitted wave propagating in the positive z direction. In
the region of constant potential (V' = V) to the left of the barrier the wave func-
tion has the form

u(z) = Aexp (i z) + Bexp (—ig.2) (1.15)
with

1/2
2m(W — V)
LT [—T—]

The first term in the above equation represents the incident wave and the second
term represents the reflected wave. The incident, reflected, and transmitted cur-
rent densities are calculated in the usual manner from the formula (see, e.g., Lan-
dau and Lifshitz, 1958)

F)
Jom = 2ml<f* zfa Le f*> (1.16)



ELECTRON EMISSION FROM FREE-ELECTRON METALS 5

where f, stands for the incident, reflected, and transmitted wave, respectively. The
transmission coefficient is defined by

tra C 2
D(W) =Lz _ 4R —‘ (1.17)
len('
and the reflection coefficient by
z,re B :
ROW) =L = H (1.18)
]le’](. A

Explicit analytic expressions for D and R can be obtained only for a few specific
potential barriers. On the other hand, one can obtain D(W) and R(W) numeri-
cally, and without much difficulty, for any barrier which depends only on the z
coordinate. This can be done as follows. One starts from the known wave function
[Eq. (1.14)] at some point to the right of the barrier where the potential is con-
stant. The numerical value of C is unimportant and can be put equal to unity.
One then proceeds to integrate numerically the Schrodinger equation, Eq. (1.13),
moving from right to left in a step-by-step procedure using one of a number of
methods which are available for this purpose (see, e.g., Buckingham, 1962). By
carrying the integration into the region of constant potential to the left of the bar-
rier, we obtain the wave function there and hence the values of 4 and B in Eq.
(1.15), and hence D(W) and R(W). We note that when the potential barrier
decreases slowly and monotonically to the right of the barrier top, one does not
need to start the integration from the region of constant potential, which, thus,
becomes irrelevant to the transmission problem. Under the above conditions there
always exists a region, z = z,, to the right of the barrier peak where the ordinary
WKB approximation is valid (see, e.g., Landau and Lifshitz, 1958), and there the
wave function appropriate to a transmitted wave has the form

C ' z
u(z) = Wexp [z J; A(2) dz] (1.19)

where
2m 112
Az) = {F (W — V(;.«)]j& (1.20)

Obviously W > V(z) for z > z,. In this case the transmission coefficient is given
by

»1 2

D(W) = —
qL

C

y (1.21)
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If we take advantage of Eq. (1.19) we can start the numerical integration at z,.
Again, the numerical value of C is unimportant and can be chosen arbitrarily.

Although the above procedure for calculating the transmission coefficient is
easy to carry out and should be used when the situation demands an accurate
analysis of specific experimental data, it is not appropriate for a general analysis
of electron emission phenomena. For that purpose a less accurate method leading
to an analytic expression for the transmission coefficient (at least for certain values
of the physical parameters) is much preferable. Such a method, and one which
has been extensively used in the study of electron emission, has been developed by
Miller and Good (1953a). Their method is a generalization of the ordinary WKB
method and it leads to the WKB results under certain limiting conditions. Their
theory applies to the case of a slowly varying potential barrier, with only two
classical turning points. This means that there are only two real roots of the
equation

W—Vz =0 (1.22)

when W lies below the top of the barrier. We denote them by z; and 2, and we
assume that z; < z,. Also, it is assumed that when W goes above the top of the
barrier, the two real roots of Eq. (1.22) go unambiguously into two complex roots,
the one being the complex conjugate of the other since V(z) is real. We denote by
z, the one with the positive imaginary part, and by z, the one with the negative
imaginary part. The method of Miller and Good is not applicable if [W — V(z)]
has additional zeros or singularities in the vicinity of z; or z;. When the conditions
for the applicability of their method are satisfied as, for example, in the case of
the barrier shown in Fig. 1.1, the transmission coefficient is given to a gooa
approximation by the following formula:

D(W) = {1 + exp [—A(W)]}”" (1.23)

where

Z

AW) =21 J 2)\(S) d§ (1.24)

21

where A(£) is given by Eq. (1.20). The normal energy W may lie above or below
the top of the barrier. In performing the £ integration in Eq. (1.24) one must
remember that z; and 2z, and hence £ are complex when W lies above the top of
the barrier. In performing the £ integration that branch of A(§) is taken for which
—7 < arg [N*(§)] =< 7. Accordingly, when £ is real we get arg [A(£)] = 0 for W
> V() and arg [A(§)] = 7/2 for W < V(). One can easily show that A(W) is
always real and that it is positive for energies above the top of the barrier and
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negative for energies below the top of the barrier. It is also obvious that when the
energy W lies well below the barrier top, we have exp [—A(W)] > 1 and Eq.
(1.23) reduces to the well-known formula

D(W) = exp |:—2 JZZ [A(2)] dz] (1.25)

z

which is obtained by the ordinary WKB method (see, e.g., Landau and Lifshitz,
1958). We note that when the incident energy is equal to the barrier height we
obtain 4 = 0 and the WKB formula, Eq. (1.25), gives D = 1, whereas the Miller
and Good formula, Eq. (1.23), gives D = 0.5. A comparison with exact results
made by Miller and Good (1953a) for a barrier similar to the one shown in Fig.
1.1 suggests that Eq. (1.23) underestimates the transmission coefficient by 10% or
so in the energy region around the top of the barrier. The approximation improves
considerably as we move away from the barrier top and is very accurate for ener-
gies sufficiently away from it. The accuracy at a given energy will, of course,
depend on the shape of the barrier.

1.3. ELECTRON EMISSION FROM A METAL
SURFACE

Consider a semi-infinite metal occupying the half-space from z = —co to 2
=~ 0. According to the free-electron theory of metals an electren inside the metal
sees a constant (zero) potential. On the other hand, we know from experience that
at zero temperature a certain minimum energy, equal to the work function ¢, must
be supplied to the metal before an electron can escape from it. We also know from
classical electrostatics that an electron situated at a finite distance from the plane
surface of a perfect conductor is attracted to it, by the well-known “image” force:
—e?/42%. (The minus sign arises because we have assumed that the z axis points
outwards from the metal.) Hence, the potential energy of the electron on the vac-
uum side of the metal-vacuum interface is asymptotically given by

Viz) =~ Epr + ¢ — ¢*/4z (1.26)

In recent years, a lot of effort has been put into microscopic studies of the
potential barrier at a metal-vacuum interface (see, e.g., Lang, 1973; Inkson, 1971;
Appelbaum and Hamann, 1972a; Harris and Jones, 1973; 1974). All investiga-
tors agree that Eq. (1.26) is valid for z > (3 A or s0). The detailed shape of the
barrier for z < 3 A depends on the metal surface under consideration. In the
traditional (free-electron) theories of electron emission it is assumed that Eq.
(1.26) remains valid right up to a point 2, such that V' (z,) = 0. When an external
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electric field F is applied to the surface, a term —eFz is added on the right of Eq.
(1.26). In electron emission experiments > 0. In summary, the potential energy
field seen by an electron in an electron emission experiment is approximated by

2

V(z) E1.~+¢—4i-—er for z > 2,
z

1.27)

0 for z < z,

where z, is determined by V(z,) = 0. In Fig. 1.2 we show this potential barrier
for a typical value of Er + ¢ and for a value of the applied field appropriate to
a field emission experiment. We note that the peak of the barrier described by Eq.
(1.27) occurs at

2, = (e/4F)' (1.28)
=19/F*A  (with Fin V/A)

v (eV)

2 =
metal vacuum
N ST | |
2 o} o 10 " 20
z (A)
FIGURE 1.2

The surface potential barrier seen by an electron in a field emission experiment (solid line). The
contributions of the image potential and of the applied field (F = 0.3 V/A) are shown by the broken
and the broken-solid line, respectively.
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and has the value

Vmax = EF =+ ‘b - (63F)1/2 (129)
’ Er+ ¢ — 3.79F"* eV (with Fin V/A)

In order to construct a theory of electron emission from metal surfaces we
proceed as follows. We assume (this is justified because the electric field is negli-
gible inside the metal) that the number of electrons with normal energy between
W and W + dW impinging on the surface barrier from within the metal when
a current is emitted is practically identical with its equilibrium value given by

mdW J°°
NW,T) dW = ——— E) dE
( ) 2k’ Jw RE) (1.30)
kaT W— EF
=—2"] L
alh n[l +exp< Wi >:| dw

Each of these electrons has a probability D(W) to be transmitted through the
surface potential barrier. Hence, the emitted current density, i.e., the number of
electrons emitted per unit area per unit time multiplied by the magnitude of the
electronic charge, is given by

JWFT) = ¢ J:o NW,T)D(W) dW (1.31)

where 7 and F denote as usual the temperature and the applied field, respectively.
Murphy and Good (1956) have shown that if one assumes the validity of the
surface barrier given by Eq. (1.27) and if one uses Eq. (1.23) for the calculation
of the transmission coefficient for this barrier, one obtains, starting from Eq.
(1.31), an expression for J(F,T) valid for any values of F and 7, which in turn,
leads to explicit and relatively simple formulas for J(F,T) for certain regions of
Fand 7. As we shall see, the Murphy and Good theory leads in a systematic way
to the Fowler-Nordheim formula for field emission, i.e., emission at very low
temperatures with a strong applied field, and to the Richardson and Schottky for-
mulas for thermionic emission, i.e., emission at high temperatures with a weak or
zero applied field.

The transmission coeflicient for the potential barrier of Eq. (1.27) is, accord-
ing to Eqs. (1.23) and (1.24), given by

D(W,F) = {1 + exp [QW)]})"! (1.32)



