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Preface

The study of the cone of excessive measures associated
with a Markov process goes back to Hunt’s fundamental mem-
oir [H57]. However until quite recently it received much less
attention than the cone of excessive functions. The fact that
an excessive function can be composed with the underlying
Markov process to give a supermartingale, subject to secondary
finiteness hypotheses, is crucial in the study of excessive func-
tions. The lack of an analogous construct for excessive mea-
sures seemed to make them much less tractable to a proba-
bilistic analysis. This point of view changed radically with
the appearance of the pioneering paper by Fitzsimmons and
Maisonneuve [FM86] who showed that a certain stationary
process associated with an excessive measure could be used
to study excessive measures probabilistically. These station-
ary processes or measures had been constructed by Kuznetsov
[KuT4] extending earlier work of Dynkin. It is now common
to call them Kuznetsov measures. Following the Fitzsimmons-
Maisonneuve paper there was renewed interest and remarkable
progress in the study of excessive measures. The purpose of
this monograph is to organize under one cover and prove under
standard hypotheses many of these recent results in the theory
of excessive measures.

The two basic tools in this recent development are Kuznet-
sov measures mentioned above and the energy functional. The
energy functional has a long history that may be traced back
to Hunt, but its systematic use in the study of excessive mea-
sures seems to be more recent. However, see [CL75] for its
definition and use in an abstract setting. Also it was used
for other purposes by Meyer in [Me68] and [Me73]. A third
ingredient in this development is the use of two Riesz type
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decompositions of an excessive measure: the first into dissipa-
tive and conservative parts is due to Dynkin [Dy80]—see also
Blumenthal [B1]; the second into a potential and a harmonic
part is due originally to Getoor and Glover [GG84]. Both of
these decompositions, as well as the more elementary decom-
position into purely excessive and invariant parts, were given
probabilistic interpretations in terms of Kuznetsov measures in
[FM86].

Using these tools one can construct a potential theory for
excessive measures that in many respects is closer to classical
potential theory than the potential theory of excessive func-
tions. In classical potential theory or, more generally, under
strong duality assumptions as in Chapter VI of [BG], there
is an isomorphism between excessive measures and (a class of)
coexcessive functions. It turns out that many of the fine re-
sults about excessive functions under these hypotheses, when
interpreted as theorems about coexcessive measures, have a
natural extension to a general Markov process, even though
the corresponding results for excessive functions do not gen-
eralize completely. Thus the natural generalization of certain
classical results only appears in the potential theory of exces-
sive measures. Of course, there exist generalizations of the
classical theory to abstract cones that include both excessive
measures and functions. However, our emphasis here is on the
underlying probabilistic meaning of the potential theory.

One other important benefit of this approach is that it
requires no a priori transience hypothesis: the transience as-
sumptions being subsumed under the conservative-dissipative
dichotomy. It is remarkable that often the results are the same
in the two cases, although the proofs may be quite different.

In the first five sections we develop the theory of excessive
measures about as far as we can without using Kuznetsov mea-
sures. In sections 6 and 7 we introduce Kuznetsov measures
and use them to study excessive measures and their poten-
tial theory. These first seven sections contain the basic po-
tential theory of excessive measures. Sections 8, 10 and 11
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contain other important applications of the energy functional
and Kuznetsov measures, but the role of excessive measures is
somewhat secondary. Section 9 on flows and Palm measures is
perhaps tangential to the main development, but is important
for a better understanding of sections 8 and 10. Appendix A
contains an expanded proof of Meyer’s perfection theory for
multiplicative functionals [Me74]. Although one could avoid
it—a cost, of course—I have decided to include it because of its
importance. It is often quoted and is deserving of an expanded
proof.

My guiding principle during the writing was to give com-
plete proofs of all results that are not available in the standard
reference books listed at the beginning of the bibliography.
Like most principles, it is easier to formulate in the abstract
than follow in the particular. One consequence of this is that I
refer to these standard books for needed facts whenever possi-
ble, rather than to the original papers in which they appeared.
(As of this writing only a preliminary version of Chapters XV1II
and XVIII of the final part of the monumental treatise [DM]
by Dellacherie and Meyer is available to me, and so references
to these two chapters may not be completely accurate when
the definitive version appears.)

It is a pleasure to acknowledge a few of my debts. First
and most of all I must thank Pat Fitzsimmons. Even the ca-
sual reader will notice the extent to which his ideas pervade
this work. But I owe him much more. I had the privilege of
consulting with him on an almost daily basis during the writ-
ing of this volume. Time and time again he set me straight
and pointed the way when I was stuck or confused. It seems
unlikely that this work would have been completed without
his help. I would especially like to thank him for his contribu-
tions to Appendix A and to acknowledge that the concept of a
“good partition” used there is due to him. Last but not least
he read the entire manuscript and made numerous suggestions
- for improving the exposition. Jutta Steffens supplied the key
step in the proof of Proposition 4.17. This enabled me to sim-
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plify considerably the original proof of the important Theorem
7.9 which gives the probabilistic meaning of Hunt’s balayage
operation on excessive measures. Neola Crimmins displayed
her customary superb skill as well as unlimited patience in
transforming my handwritten scrawl into the beautiful TpX
format. Finally I received support from the National Science
Foundation under NSF Grant DMS87-21347 during part of the

writing.

La Jolla, California R. K. Getoor
September, 1989
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1. Notation and Preliminaries

We shall assume once and for all that
X = (Qaf7ft,-Xt79t,Pz)

is a right Markov process as defined in §8 of [S] with state space
(E,£), semigroup (P;), and resolvent (U?). To be explicit E
is a separable Radon space and £ is the Borel o-algebra of E.
A cemetery point A is adjoined to E as an isolated point and
En:=EU{A}, Ea:=0(EU{A}). (The symbol “: =" should
be read as “is defined to be”.) We suppose that [S, (20.5)]
holds; that is, X;(w) = A implies that X,(w) = A for all
s > t and that there is a point [A] in © (the dead path) with
X:([A]) = A for all t > 0. Of course, ( = inf {t: X, = A}
is the lifetime of X . The filtration (F,F;) is the augmented
natural filtration of X, [S, (3.3)]. We shall always use £ to
denote the Borel o-algebra of E in the original topology of E.
Beginning in §20, Sharpe uses £ to denote the Borel o -algebra
of E in the Ray topology. We shall not use this convention.
We shall write £" for the o-algebra of Ray Borel sets. These
assumptions on X are weaker than those in [G] or [DM, XVI-
4]. Beginning in §6 we shall make an additional assumption on
X . (See (6.2)). To avoid trivialities we assume throughout this
monograph that Xo(w) = A, fow = w, and Gow = [A] for
allw e Q.

Our notation for the objects associated with X is the
standard notation (with few exceptions) that may be found in
the familiar reference books [BG], [DM], [G], and [S]. For
the convenience of the reader we shall recall the basic ones as
well as some of their familiar properties. We refer the reader
to the above references for proofs.
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If (H,H) is a measurable space, H* denotes the o-algebra
of universally measurable sets over (H,H). If C is any collec-
tion of extended real valued functions on H, then pC (resp.
bC) denotes those f € C which are positive (resp. bounded).
In particular pH (resp. bH) denotes the collection of positive
(resp. bounded) H measurable functions on H.

S? or S9(X) denotes the cone of g-excessive functions
of X, ¢ > 0. As usual we write S = S°. Perhaps the most

useful o-algebra on E is £%:= ¢ ( U S7]. It is immediate
g20

from the resolvent equation that £¢ = ¢(S?) for any ¢ > 0.
Also P, and U? map £° into itself. The potential kernel of
X, U:=U" is proper provided there exists f € £* with f > 0
and Uf < oco. Then there exists ¢ € £ with ¢ > 0 and
Ug < 1. See [DM, XII-8] or [G80]. In fact one may even
suppose that g is finely continuous. If U is proper and u € S,
then there exists a sequence (f,) C pb€® with Uf, T u [DM,
XII-17]. The process X is transient provided U is proper.
A function f € p&* is supermedian provided Pf < f for
each t > 0. Then f:=1 ltiﬁ')l P, f is excessive and f is called

the ezcessive regularization of f. We write P! = e~ 9P, for
g > 0. This is the semigroup of X7, the g-subproces of X.
Clearly S?(X) = S(X7). Since X1 is a right process all of the
above considerations may be applied to X 7. In particular, X¢
is transient when ¢ > 0. We let F§ (resp. F°) denote the
o-algebra generated by fo X, with f € £€° and s < ¢ (resp.
s < 00).

A o-finite measure { on (E,£) is g-ezcessive provided
EP} < ¢ for each t > 0. From now on we shall just say £ is a
measure on £ when we mean a measure on (E, £). Of course,
any measure { on E has a unique extension to £* which we
again denote by {. Let Exc? or Exc?(X) denote the class of
g-excessive measures. We drop ¢ from the notation when it
has the value zero. Thus Exc denotes the class of excessive

measures. Obviously Exc?(X) = Exc(X?). If ¢ € Exc?, then
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(P! 1€ as t | 0 [DM, XII-37b]. Suppose £ € Exc and U is
proper. Then there exists a sequence of finite measures (u,)
on E with p,U T ¢ [DM, XII-38]. Clearly if £,n € Exc, then
¢ An € Exc and if (£,) is an increasing sequence of excessive
measures, then &: =T lim ¢, € Exc provided £ is o-finite.

If B €&, then Tg:= inf {t > 0: X; € B} where the
infimum of the empty set is +oco is an (F;) stopping time.
If B €&, then Tp is even an (F;,) stopping time; that is
{Tp < t} € Ff for each t > 0. Here F; is the universal
completion of F2:= o(X,: s < t) and F} C F; for each t.
Tp is the hitting time of B. Define for f € p&*

(1.1) PLf(z)=P*[e 2 fo Xp,]:= / e~ T8 f o X1, dP* .

where, by convention, e T8 = 1{Tp<oo}- We also use the
convention that any function f on E is extended to EA by
f(A) = 0. Thus in (1.1) the integration in w is only over
the set {ITp < (}. Clearly P} is a kernel on (E,&*). If
i is a finite measure on E and B € £°, then there exists
an increasing sequence (K,) of compact subsets of B with
Tk, | Tp a.s. P* [G, (12.15)]. If B € £°, B" denotes the
set of regular points for B, B":= {z: P*(Tg = 0) = 1} and
B™ € £¢. It is important to note that B and P} depend only
on the semigroup (P;) and not on the particular realization,
X, of (P;) as a right process. See §19 of [S]; especially (19.7)
in which nearly optional should be replaced by £° measurable.
(The proof of (19.7ii) as stated in [S] is incomplete.)

The definition of the fine topology in [S] should be mod-
ified slightly. The definition (10.7) in [S] should be changed
to read as follows: A subset G of E is finely open provided
for each z € G there exists B € £° such that z € B C G
and z ¢ (B°)". (Here B°:= E\B and our B corresponds
to B¢ in [S, (10.7)]. The critical difference is that we require
B € &° rather than nearly optional.) By the zero-one law
z ¢ (B°)" if and only if P*(Tg > 0) = 1. The fine topology
on E is the collection of finely open sets. With this definition
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the fine topology depends only on the semigroup (P;) and not
on the particular realization, X, of (P;) as a right process.
Consequently in proving results about the fine topology one
may suppose X satisfies the conditions in §20 of [S] without
loss of generality. With this modification in the definition of
the fine topology, the proof of Theorem 49.9 in [S] is valid. It

states that the fine topology is generated by |J S7, or just by
920

S? for any ¢ > 0. The proof of the following proposition is a
straightforward adaptation of the proof of [BG, II-(4.6)].

(1.2) Proposition. Suppose U 1is proper. Then the fine topol-
ogy 18 generated by S.

Proof. As observed earlier we may suppose X satisfies the
conditions in §20 of [S] in the proof. Let 7 be the topology
generated by S and let O(f) be the fine topology. Then it
suffices to show O(f) C 7. The proof of (S, (49.9)] shows that
sets of the form {¢g < 1} where ¥g:= P’ (e~7¢) as G ranges
over all open sets in the Ray topology of E form a base for
O(f). Fix such a G and let ¢ = v¢. Since U is proper, there
exists 0 < h <1 with h € £° and Uh < 1. Let f, = (nh)A1l.
Then f, >0, fn T1,and Uf, < n. Hence

Ts
Pt = f, — Pollf, = P fao Xedt 1 P (To AC).
0

Consequently ¢:= P (Tg A(¢) is T -ls.c. If ¢(z) > 0, then
P*(Tg > 0) =1 and so 9¥(z) < 1. But P*(Tg > 0) =1 if
¥(z) < 1 and thus ¢(z) > 0. Therefore {¢p < 1} = {¢ >0} €
T. Hence O(f)C T. "

We close this section with some additional notational con-
ventions which we shall use without special mention in the
sequel. Let (M, M) and (N,N') be measurable spaces. We
write f € M|N to indicate that f is a measurable mapping
from M to N; thatis, f:M - N and f7T}(NM)C M. If B
is any subset of M, M|p denotes the trace of M on B. If
f is a numerical function on M, ||f||:= sup {|f(z)|: ¢ € M}.
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If 4 is a measure on (M, M) and f € pM™* we write fu or
f + w for the measure B — [ fdu defined on (M, M). We
B

also write u(f) or (u, f) for [ fdu, and sometimes just puf.
Thus pUf = u(Uf) = pU(f). All named functions on E —
the state space of X —are in p€* and all named subsets of
E are in £° unless explicitly stated otherwise. We use the
American convention for limits. For example, if f is a numer-
ical function on R, we write l;iltl f(s) rather than lllrflt f(s).

However, we use the notation t, || ¢t to denote a sequence

(tn) with t, > t for each n and which decreases to t. We

write Tlifn f(s) = L to indicate that f(s) increases to L as
slt

s decreases to t, etc. We use the standard notation @ and R
for the rationals and the reals respectively, while @*, R, and
R** denote QN [0, 0], RN[0,00[ and RN]O, co[ respectively.
B, B*, and B** denote the Borel o-algebras of R, Rt, and
R** respectively. As usual in the theory of Markov processes
almost surely (a.s.) means a.s. P# for each initial measure u
on E. Similarly indistinguishable means P# indistinguishable
for each u.

There is one technical convention that we adopt deserving
special mention. If f € p&*, then one readily checks that
(t,w) = foXy(w) is (Bt ® F°)* measurable. In particular
if P is any probability on 2, t — fo X,;(w) is Lebesgue
measurable for P a.e. w. Consequently integrals of the form
J #(t)f o X, dt for ¢ € pBt are defined P a.e., and since P
is arbitrary they are F* measurable provided they are defined
arbitrarily (or left undefined) on the set of w’s such that ¢t —
f o X¢(w) is not Lebesgue measurable. If we want or need an
unambiguously defined function of w we replace the integral by
the outer integral, [~ ¢(t)f o X¢(w) dt, discussed in Appendix
B. The reader should consult Appendix B for more details.
In the sequel we shall use the symbol [ ¢(¢)f o X, dt in this,
perhaps, somewhat ambiguous manner.
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In this section we shall define several important subclasses
of excessive measures and detail two Riesz type decompositions
of excessive measures.

A o-finite measure £ on E is invariant provided £ =
EP, for each t > 0. We write Inv for the class of invariant
measures. Clearly Inv C Exc. We write Inv (X)) or Inv (P;) if
we want to emphasize the process X or the semigroup (F).
This same notational scheme will be used for the other classes
of excessive measures to be introduced in this section. If x is a
measure on F, then it is easily checked that (uU)P; < uU and
so pU € Exc if and only if it is o-finite. Excessive measures
of the form pU are called potentials and we write Pot for
the class of potentials. If f > 0 then Uf > 0, and so if
pU € Pot then y must be o-finite. The converse is false even
if U is proper; for example, consider Brownian motion in three
or more dimensions and take p to be Lebesgue measure. On
the other hand if U is proper and y is a finite measure, then
uU € Pot.

Suppose pU € Pot and f > 0 with pU(f) < co. Then

uUPt(f)z;/t pPy(f)ds -0 as t— co.

This leads to the following definition. An excessive measure ¢
is purely ezcessive provided £Py(f) — 0 as t — oo whenever
f 20 with £{(f) < co. The class of purely excessive measures
is denoted by Pur. Then Pot C Pur C Exc.

We need some elementary facts about measures. The
standard proofs are left to the reader. If 1 and v are measures
on E we write 4 < v provided u(B) < v(B) for all B € £
and, hence all B € £€*. If 4 and v are o-finite measures
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and pu < v, then there exists a unique o-finite measure, A,
such that u + A = v. We write A = v —pu. If (p,) is a
decreasing sequence of o-finite measures, then there exists a
unique o -finite measure g such that p,(B) | u(B) whenever
pn(B) < oo for some n. Then p,(f) | u(f) if f > 0 and
pn(f) < oo for some n. We write p =] lim y, or simply
pn | p. This extends to an indexed family (u¢),,, of o-finite
measures which is decreasing (us > p¢ if s < t). Note that if
(pn) (or (pt)) is decreasing and pn(f) — O for a single f >0
with p,(f) < co for some n, then p, | 0.

We come now to the first decomposition of excessive mea-
sures.

(2.1) Theorem. Let £ € Exc. Then £ may be written uniquely
as £ = & + &, where & € Inv and §, € Pur. Moreover

& =1 lim ¢P..

Proof. Since { € Exc, ({Pt),,, is decreasing and so &;:=
tlim £ P, exists as a o-finite measure and §; < €. If f > 0 with
— 00

£(f) < o0 and s > 0, then &(P.f) =L lim EP(P.f) = ().
Consequently ¢; € Inv. Now defining £,:= £ — &;, it follows
from the invariance of ¢; that £, € Exc and, hence, £, € Pur.
If £=n+ A with n € Inv and A € Pur, then since A\P; | 0 as
t — oo it follows that {; = n, and then that {, = \. n

The next decomposition is considerably less elementary
than the one detailed in Theorem 2.1. It is due to Dynkin
[DY80]. However, we shall follow Blumenthal [B86] in our
discussion. We begin with an elementary fact.

(2.2) Proposition. Let £ € Pur. Then there ezists an in-
creasing sequence of potentials (p,U) with u,U T €.

Proof. Since £ € Exc we may define o-finite measures u,:=

n[€ — Py/n€]. Let f >0 with £(f) < co. Then



