LEWIS | CHASE

java e

SOFTWARE STRUCTURES

iy
««««««««

“““““““

©
ava Third Edition

SOFTWARE S]#
Designing and Using

JOHN LEWIS
Vicginia-Fech

JOSEPH CHASE

Radford Universitv

Addison-Wesley
New York Boston San Francisco
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

Editor-in-Chief

Editorial Assistant

Managing Editor

Production Supervisor

Marketing Manager

Marketing Coordinator

Senior Manufacturing Buyer

Online Product Manager

Art Director

Cover Design

Project Management, Composition, and Illustrations
Project Coordinator, Nesbitt Graphics, Inc.
Project Manager, Nesbitt Graphics, Inc.
Text Design, Nesbitt Graphics, Inc.

Michael Hirsch
Stephanie Sellinger
Jeffrey Holcomb
Heather McNally
Erin Davis

Kathryn Ferranti
Carol Melville
Bethany Tidd

Linda Knowles

Elena Sidorova
Nesbitt Graphics, Inc.
Harry Druding

Kathy Smith

Jerilyn Bockorick, Alisha Webber

Cover Image Steve Cole/Getty Images

Access the latest information about Addison-Wesley Computer Science titles from our World Wide Web site:
http://www.pearsonhighered.com/cs.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They have been tested
with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Lewis, John, 1963-
Java software structures : designing and using data structures / John
Lewis, Joseph Chase. -- 3rd ed.
p- cm.

Includes bibliographical references and index.

ISBN 978-0-13-607858-6 (alk. paper)

1. Java (Computer program language) 2. Data structures (Computer science)
3. Computer software--Development. 1. Chase, Joseph. II. Title.
QA76.73.]38L.493 2009

005.13'3--dc22

2009000302

Copyright © 2010 Pearson Education, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America.

For information on obtaining permission for use of material in this work, please submit a written request to Pearson
Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116, fax your request to
(617)671-3447, or e-mail at http://www.pearsoned.com/legal/permissions.htm.

Addison Wesley
is an imprint of
ISBN-13: 978-013-607858-6

ISBN-10: 0-13-607858-3

PEARSON

e —

www.pearsonhighered.com 12345678 10-EB-13 12 11 10 09

To my wife Sharon and my kids:
Justin, Kayla, Nathan, and Samantha

JE.

To my loving wife Melissa for her support and encouragement
and to our families, friends, colleagues, and students who have provided
so much support and inspiration through the years.

-J. C.

This book is designed to serve as a text for a course on data structures and algo-
rithms. This course is typically referred to as the CS2 course because it is often
taken as the second course in a computing curriculum. We have designed this
book to embrace the tenets of Computing Curricula 2001 (CC2001).

Pedagogically, this book follows the style and approach of the leading CS1
book Java Software Solutions: Foundations of Program Design, by John Lewis
and William Loftus. Our book uses many of the highly regarded features of that
book, such as the Key Concept boxes and complete code examples. Together,
these two books support a solid and consistent approach to either a two-course
or three-course introductory sequence for computing students. That said, this
book does not assume that students have used Java Software Solutions in a previ-
ous course.

Material that might be presented in either course (such as recursion or sorting)
is presented in this book as well. We also include strong reference material pro-
viding an overview of object-oriented concepts and how they are realized in Java.

We understand the crucial role that the data structures and algorithms course
plays in a curriculum and we think this book serves the needs of that course well.

The Third Edition

We have made some key modifications in this third edition to enhance its peda-
gogy. The most important change is a fundamental reorganization of material that
is designed to create a cleaner flow of topics. Instead of having an early, large
chapter to review object-oriented concepts, we’ve included that material as an
appendix for reference. Then we review concepts as needed and appropriate in the
context of the implementation strategies discussed throughout the book and cite
the appropriate reference material. This not only links the topics in a timely fash-
ion but also demonstrates the usefulness of particular language constructs.

We’ve expanded the discussion of Analysis of Algorithms, and given it its own
chapter. The discussion, however, stays at an appropriately moderate level. Our
strategy is to motivate the concepts involved in the analysis of algorithms, laying
a solid foundation, rather than get embroiled in too much formality.

Another key organizational change is that the introduction to collections uses
a stack as the primary example. In previous editions of this book we went out of

vii

viii

PREFACE

our way to introduce collections in an abstract way that separated it from the core
data structures, using examples such as a bag or set collection. This new approach
capitalizes on the fact that a stack is conceptually about as straightforward as it
gets. Using it as a first example enhances the understanding of collections as a
whole.

The previous edition of the book had several chapters that focused on larger
case studies that made use of collections to solve non-trivial problems. While
many instructors found these useful, they also seemed to interrupt the flow of cov-
erage of core topics. Therefore we have taken the case study chapters out of the
book and put them on the web as supplementary resources. We encourage all
instructors to download and use these resources as they see fit.

Finally, for this edition we’ve reviewed and improved the discussions through-
out the book. We’ve expanded the discussion of graphs and reversed the order of
the graphs and hashing chapters to make a cleaner flow. And we've added a chap-
ter that specifically covers sets and maps.

We think these modifications build upon the strong pedagogy established by
previous editions and give instructors more opportunity and flexibility to cover
topics as they choose.

Our Approach

Books of this type vary greatly in their overall approach. Our approach is founded
on a few important principles that we fervently embraced. First, we present the
various collections explored in the book in a consistent manner. Second, we
emphasize the importance of sound software design techniques. Third, we organ-
ized the book to support and reinforce the big picture: the study of data structures
and algorithms. Let’s examine these principles further.

Consistent Presentation

When exploring a particular type of collection, we carefully address each of the
following issues in order:

1. Concept: We discuss the collection conceptually, establishing the services it
provides (its interface).

2. Use: We explore examples that illustrate how the particular nature of the
collection, no matter how it’s implemented, can be useful when solving
problems.

3. Implementation: We explore various implementation options for the
collection.

4. Analysis: We compare and contrast the implementations.

The Java Collections API is included in the discussion as appropriate. If there
is support for a particular collection type in the API, we discuss it and its imple-
mentation. Thus we embrace the API, but are not completely tied to it. And we
are not hesitant to point out its shortcomings.

The analysis is kept at a high level. We establish the concept of Big-Oh nota-
tion in Chapter 2 and use it throughout the book, but the analysis is more intu-
itive than it is mathematical.

Sound Program Design

Throughout the book, we keep sound software engineering practices a high pri-
ority. Our design of collection implementations and the programs that use them
follow consistent and appropriate standards.

Of primary importance is the separation of a collection’s interface from its under-
lying implementation. The services that a collection provides are always formally
defined in a Java interface. The interface name is used as the type designation of the
collection whenever appropriate to reinforce the collection as an abstraction.

In addition to practicing solid design principles, we stress them in the discus-
sion throughout the text. We attempt to teach both by example and by continual
reinforcement.

Clean Organization

The contents of the book have been carefully organized to minimize distracting
tangents and to reinforce the overall purpose of the book. The organization sup-
ports the book in its role as a pedagogical exploration of data structures and algo-
rithms as well as its role as a valuable reference.

The book can be divided into numerous parts: Part I consists of the first two
chapters and provides an introduction to the concept of a collection and analysis
of algorithms. Part II includes the next four chapters, which cover introductory
and underlying issues that affect all aspects of data structures and algorithms as
well as linear collections (stacks, queues, and lists). Part III covers the concepts of
recursion, sorting, and searching. Part IV covers the nonlinear collections (trees,
heaps, hashing, and graphs). Each type of collection, with the exception of trees,
is covered in its own chapter. Trees are covered in a series of chapters that explore
their various aspects and purposes.

Chapter Breakdown

Chapter 1 (Introduction) discusses various aspects of software quality and pro-
vides an overview of software development issues. It is designed to establish the

PREFACE

ix

X

PREFACE

appropriate mindset before embarking on the details of data structure and algo-
rithm design.

Chapter 2 (Analysis of Algorithms) lays the foundation for determining the
efficiency of an algorithm and explains the important criteria that allow a devel-
oper to compare one algorithm to another in proper ways. Our emphasis in this
chapter is understanding the important concepts more than getting mired in heavy
math or formality.

Chapter 3 (Collections) establishes the concept of a collection, stressing the
need to separate the interface from the implementation. It also conceptually intro-
duces a stack, then explores an array-based implementation of a stack.

Chapter 4 (Linked Structures) discusses the use of references to create linked
data structures. It explores the basic issues regarding the management of linked
lists, and then defines an alternative implementation of a stack (introduced in
Chapter 3) using an underlying linked data structure.

Chapter 5 (Queues) explores the concept and implementation of a first-in, first-
out queue. Radix sort is discussed as an example of using queues effectively. The
implementation options covered include an underlying linked list as well as both
fixed and circular arrays.

Chapter 6 (Lists) covers three types of lists: ordered, unordered, and indexed.
These three types of lists are compared and contrasted, with discussion of the
operations that they share and those that are unique to each type. Inheritance is
used appropriately in the design of the various types of lists, which are imple-
mented using both array-based and linked representations.

Chapter 7 (Recursion) is a general introduction to the concept of recursion and
how recursive solutions can be elegant. It explores the implementation details of
recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 8 (Sorting and Searching) discusses the linear and binary search algo-
rithms, as well as the algorithms for several sorts: selection sort, insertion sort,
bubble sort, quick sort, and merge sort. Programming issues related to searching
and sorting, such as using the Comparable interface as the basis of comparing
objects, are stressed in this chapter. Searching and sorting that are based in par-
ticular data structures (such as heap sort) are covered in the appropriate chapter
later in the book.

Chapter 9 (Trees) provides an overview of trees, establishing key terminology
and concepts. It discusses various implementation approaches and uses a binary
tree to represent and evaluate an arithmetic expression.

Chapter 10 (Binary Search Trees) builds off of the basic concepts established in
Chapter 9 to define a classic binary search tree. A linked implementation of a
binary search tree is examined, followed by a discussion of how the balance in the

tree nodes is key to its performance. That leads to exploring AVL and red/black
implementations of binary search trees.

Chapter 11 (Priority Queues and Heaps) explores the concept, use, and imple-
mentations of heaps and specifically their relationship to priority queues. A heap
sort is used as an example of its usefulness as well. Both linked and array-based
implementations are explored.

Chapter 12 (Multi-way Search Trees) is a natural extension of the discussion of
the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are
examined and implementation options are discussed.

Chapter 13 (Graphs) explores the concept of undirected and directed graphs
and establishes important terminology. It examines several common graph algo-
rithms and discusses implementation options, including adjacency matrices.

Chapter 14 (Hashing) covers the concept of hashing and related issues, such as
hash functions and collisions. Various Java Collections API options for hashing
are discussed.

Chapter 15 (Sets and Maps) explores these two types of collections and their
importance to the Java Collections API.

Appendix A (UML) provides an introduction to the Unified Modeling
Language as a reference. UML is the de facto standard notation for representing
object-oriented systems.

Appendix B (Object-Oriented Design) is a reference for anyone needing a
review of fundamental object-oriented concepts and how they are accomplished
in Java. Included are the concepts of abstraction, classes, encapsulation, inheri-
tance, and polymorphism, as well as many related Java language constructs such
as interfaces.

Supplements

The following supplements are available to all readers of this book at www.aw
.com/cssupport.

m Source Code for all programs presented in the book

m Full case studies of programs that illustrate concepts from the text, includ-
ing a Black Jack Game, a Calculator, a Family Tree Program, and a Web
Crawler

The following instructor supplements are only available to qualified in-
structors at Pearson Education’s Instructor Resource Center, http://www
.pearsonhighered.com/irc. Please visit the Web site, contact your local Pearson
Education Sales Representative, or send an e-mail to computing@pearson.com,
for information about how to access them.

PREFACE

xi

xii

PREFACE

s Solutions for selected exercises and programming projects in the book
s Test Bank, containing questions that can be used for exams

» PowerPoint® Slides for the presentation of the book content

Acknowledgements

First and most importantly we want to thank our students for whom this book is
written and without whom it never could have been. Your feedback helps us
become better educators and writers. Please continue to keep us on our toes.

We would like to thank all of the reviewers listed below who took the time to
share their insight on the content and presentation of the material in this book and
its previous editions. Your input was invaluable.

Mary P. Boelk, Marquette University

Robert Burton, Brigham Young University

Gerald Cohen, St. Joseph’s College

Robert Cohen, University of Massachusetts—Boston

Jack Davis, Radford University

Bob Holloway, University of Wisconsin-Madison

Nisar Hundewale, Georgia State University

Chung Lee, California State Polytechnic University
Mark C. Lewis, Trinity University

Mark J. Llewellyn, University of Central Florida

Ronald Marsh, University of North Dakota

Eli C. Minkoff, Bates College; University of Maine—Augusta
Ned Okie, Radford University

Manuel A. Perez-Quinones, Virginia Tech

Moshe Rosenfeld University of Washington

Salam Salloum, California State Polytechnic University-Pomona
Don Slater, Carnegie Mellon University

Ashish Soni, University of Southern California

Carola Wenk, University of Texas—San Antonio

The folks at Addison-Wesley have gone to great lengths to support and
develop this book along with us. It is a true team effort. Editor-in-Chief Michael
Hirsch and his assistant Stephanie Sellinger have always been there to help.
Marketing Manager Erin Davis, her assistant Kathryn Ferranti, and the entire
Addison-Wesley sales force work tirelessly to make sure that instructors under-
stand the goals and benefits of the book. Heather McNally flawlessly handled
the production of the book, and Elena Sidorova is to be credited for the won-
derful cover design. They are supported by Kathy Smith and Harry Druding at
Nesbitt Graphics. Carol Melville always finds a way to get us time on press so

that our book makes it into your hands in time to use it in class. Thank you all
very much for all your hard work and dedication to this book.

We’d be remiss if we didn’t acknowledge the wonderful contributions of the
ACM Special Interest Group on Computer Science Education. Its publications and
conferences are crucial to anyone who takes the pedagogy of computing seriously.
If you’re not part of this group, you’re missing out.

Finally, we want to thank our families, who support and encourage us in what-
ever projects we find ourselves diving into. Ultimately, you are the reason we do
what we do.

PREFACE

xiii

Preface

Chapter 1 Infroduction

1.1

1.2

Software Quality
Correctness
Reliability
Robustness
Usability
Maintainability
Reusability
Portability
Efficiency

Quality Issues

Data Structures
A Physical Example
Containers as Objects

Chapter 2 Analysis of Algorithms

2.1 Algorithm Efficiency

2.2 Growth Functions and Big-OH Notation

2.3 Comparing Growth Functions

2.4 Determining Time Complexity
Analyzing Loop Execution
Nested Loops
Method Calls

Chapter 3 Collections
3.1 Introduction to Collections

Abstract Data Types
The Java Collections API

NN OO AU Ldh AL LN -

[
(=]

—
—
s W

15
17

19
19
20
21

27

28
29
31

XV

xvi

CONTENTS

3.2
3.3

3.4

3.5
3.6

3.7

3.8

A Stack Collection

Crucial OO Concepts
Inheritance

Class Hierarchies

The object Class

Polymorphism

References and Class Hierarchies
Generics

A Stack ADT
Interfaces

Using Stacks: Evaluating Postfix Expressions

Exceptions

Exception Messages
The try Statement
Exception Propagation

Implementing a Stack: With Arrays
Managing Capacity

The arraystack Class
The Constructors

The push Operation
The pop Operation
The peek Operation
Other Operations

Chapter 4 Linked Structures

4.1
4.2

4.3

4.4

References as Links

Managing Linked Lists
Accessing Elements
Inserting Nodes
Deleting Nodes

Sentinel Nodes

Elements Without Links
Doubly Linked Lists

Implementing a Stack: With Links
The Linkedstack Class

31

33
34
36
37
38
38
40

41
41

44

51
52
53
54

55
56

57
58
59
61
62
63

71
72

74
74
75
76
77

78
78

79
79

The push Operation 83

The pop Operation 85

Other Operations 86

4.5 Using Stacks: Traversing a Maze 86
4.6 Implementing Stacks:

The java.util.stack Class 93

Unique Operations 93

Inheritance and Implementation 94

Chapter 5 Queves 99

5.1 A Queue ADT 100

5.2 Using Queues: Code Keys 103

5.3 Using Quevues: Ticket Counter Simulation 107

5.4 Implementing Queues: With Links 112

The enque Operation 114

The dequeue Operation 115

Other Operations 117

5.5 Implementing Queves: With Arrays 117

The enqueue Operation 123

The dequeue Operation 124

Other Operations 125

Chapter 6 Lists 131

6.1 A List ADT 132

Iterators 134

Adding Elements to a List 135

Interfaces and Polymorphism 137

6.2 Using Ordered Lists: Tournament Maker 140

6.3 Using Indexed Lists: The Josephus Problem 150

6.4 Implementing Lists: With Arrays 152

The remove Operation 155

The contains Operation 157

The iterator Operation 158

The add Operation for an Ordered List 158

CONTENTS

xvii

xviii CONTENTS

Operations Particular to Unordered Lists 161

The addafter Operation for an Unordered List 162

6.5 Implementing Lists: With Links 163
The remove Operation 163
Doubly Linked Lists 165

The iterator Operation 168

6.6 Llists in the Java Collections API 171
Cloneable 172
Serializable 172
RandomAccess 172
Java.util.Vector 173
Java.util.ArrayList 173
Java.util.LinkedList 176
Chapter 7 Recursion 185
7.1 Recursive Thinking 186
Infinite Recursion 186
Recursion in Math 187

7.2 Recursive Programming 188
Recursion versus Iteration 190

Direct versus Indirect Recursion 191

7.3 Using Recursion 192
Traversing a Maze 192

The Towers of Hanot 197

7.4 Analyzing Recursive Algorithms 201
Chapter 8 Sorting and Searching 209
8.1 Searching 210
Static Methods 211
Generic Methods 211

Linear Search 212
Binary Search 213
Comparing Search Algorithms 216

8.2 Sorting 217
Selection Sort 220

Insertion Sort 222

Bubble Sort 224
Quick Sort 226
Merge Sort 229
8.3 Radix Sort 231
Chapter 9 Trees 241
9.1 Trees 242
Tree Classifications 243
9.2 Sirategies for Implementing Trees 245
Computational Strategy for
Array Implementation of Trees 245
Simulated Link Strategy for
Array Implementation of Trees 246
Analtsis of Trees 247
9.3 Tree Traversals 248
Preorder Traversal 248
Inorder Traversal 249
Postorder Traversal 249
Level-Order Traversal 250
9.4 A Binary Tree ADT 251
9.5 Using Binary Trees: Expression Trees 255
9.6 Implementing Binary Trees with Links 262
The £ind Method 269
The iteratorInorder Method 270
9.7 Implementing Binary Trees with Arrays 271
The £ind Method 273
The iteratorInorder Method 274
Chapter 10 Binary Search Trees 281
10.1 A Binary Search Tree 282
10.2 Implementing Binary Search Trees:
With Links 284
The addElement Operation 286

The removeElement Operation 288

CONTENTS

Xix

XX

CONTENTS

10.3

10.4

10.5

10.6

10.7

10.8

10.9

The removeAllOoccurrences Operation
The removeMin Operation

Implementing Binary Search Trees:
With Arrays

The addElement Operation

The removeElement Operation

The removeAlloccurrences Operation
The removeMin Operation

Using Binary Search Trees:

Implementing Ordered Lists

Analysis of the BinarySearchTreeList
Implementation

Balanced Binary Search Trees
Right Rotation

Left Rotation

Rightleft Rotation

Leftright Rotation

Implementing Binary Search Trees:
AVL Trees

Right Rotation in an AVL Tree

Left Rotation in an AVL Tree
Rightleft Rotation in an AVL Tree
Leftright Rotation in an AVL Tree

Implementing Binary Search Trees:
Red/Black Trees

Insertion into a Red/Black Tree

Element Removal from a Red/Black Tree
Implementing Binary Search Trees:
The Java Collections API

A Philosophical Quandary

Chapter 11 Priority Queues and Heaps

11.1

11.2

A Heap

The addElement Operation
The removeMin Operation
The £indMin Operation

Using Heaps: Priority Queues

291
292

294
295
296
302
303

304

308

309
310
310
311
311

312
313
315
315
315

315
316
319

321
325

333

334
334
337
338

339

