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This book is designed to serve as a text for a course on data structures and algo-
rithms. This course is typically referred to as the CS2 course because it is often
taken as the second course in a computing curriculum. We have designed this
book to embrace the tenets of Computing Curricula 2001 (CC2001).

Pedagogically, this book follows the style and approach of the leading CS1
book Java Software Solutions: Foundations of Program Design, by John Lewis
and William Loftus. Our book uses many of the highly regarded features of that
book, such as the Key Concept boxes and complete code examples. Together,
these two books support a solid and consistent approach to either a two-course
or three-course introductory sequence for computing students. That said, this
book does not assume that students have used Java Software Solutions in a previ-
ous course.

Material that might be presented in either course (such as recursion or sorting)
is presented in this book as well. We also include strong reference material pro-
viding an overview of object-oriented concepts and how they are realized in Java.

We understand the crucial role that the data structures and algorithms course
plays in a curriculum and we think this book serves the needs of that course well.

The Third Edition

We have made some key modifications in this third edition to enhance its peda-
gogy. The most important change is a fundamental reorganization of material that
is designed to create a cleaner flow of topics. Instead of having an early, large
chapter to review object-oriented concepts, we’ve included that material as an
appendix for reference. Then we review concepts as needed and appropriate in the
context of the implementation strategies discussed throughout the book and cite
the appropriate reference material. This not only links the topics in a timely fash-
ion but also demonstrates the usefulness of particular language constructs.

We’ve expanded the discussion of Analysis of Algorithms, and given it its own
chapter. The discussion, however, stays at an appropriately moderate level. Our
strategy is to motivate the concepts involved in the analysis of algorithms, laying
a solid foundation, rather than get embroiled in too much formality.

Another key organizational change is that the introduction to collections uses
a stack as the primary example. In previous editions of this book we went out of
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PREFACE

our way to introduce collections in an abstract way that separated it from the core
data structures, using examples such as a bag or set collection. This new approach
capitalizes on the fact that a stack is conceptually about as straightforward as it
gets. Using it as a first example enhances the understanding of collections as a
whole.

The previous edition of the book had several chapters that focused on larger
case studies that made use of collections to solve non-trivial problems. While
many instructors found these useful, they also seemed to interrupt the flow of cov-
erage of core topics. Therefore we have taken the case study chapters out of the
book and put them on the web as supplementary resources. We encourage all
instructors to download and use these resources as they see fit.

Finally, for this edition we’ve reviewed and improved the discussions through-
out the book. We’ve expanded the discussion of graphs and reversed the order of
the graphs and hashing chapters to make a cleaner flow. And we've added a chap-
ter that specifically covers sets and maps.

We think these modifications build upon the strong pedagogy established by
previous editions and give instructors more opportunity and flexibility to cover
topics as they choose.

Our Approach

Books of this type vary greatly in their overall approach. Our approach is founded
on a few important principles that we fervently embraced. First, we present the
various collections explored in the book in a consistent manner. Second, we
emphasize the importance of sound software design techniques. Third, we organ-
ized the book to support and reinforce the big picture: the study of data structures
and algorithms. Let’s examine these principles further.

Consistent Presentation

When exploring a particular type of collection, we carefully address each of the
following issues in order:

1. Concept: We discuss the collection conceptually, establishing the services it
provides (its interface).

2. Use: We explore examples that illustrate how the particular nature of the
collection, no matter how it’s implemented, can be useful when solving
problems.

3. Implementation: We explore various implementation options for the
collection.

4. Analysis: We compare and contrast the implementations.



The Java Collections API is included in the discussion as appropriate. If there
is support for a particular collection type in the API, we discuss it and its imple-
mentation. Thus we embrace the API, but are not completely tied to it. And we
are not hesitant to point out its shortcomings.

The analysis is kept at a high level. We establish the concept of Big-Oh nota-
tion in Chapter 2 and use it throughout the book, but the analysis is more intu-
itive than it is mathematical.

Sound Program Design

Throughout the book, we keep sound software engineering practices a high pri-
ority. Our design of collection implementations and the programs that use them
follow consistent and appropriate standards.

Of primary importance is the separation of a collection’s interface from its under-
lying implementation. The services that a collection provides are always formally
defined in a Java interface. The interface name is used as the type designation of the
collection whenever appropriate to reinforce the collection as an abstraction.

In addition to practicing solid design principles, we stress them in the discus-
sion throughout the text. We attempt to teach both by example and by continual
reinforcement.

Clean Organization

The contents of the book have been carefully organized to minimize distracting
tangents and to reinforce the overall purpose of the book. The organization sup-
ports the book in its role as a pedagogical exploration of data structures and algo-
rithms as well as its role as a valuable reference.

The book can be divided into numerous parts: Part I consists of the first two
chapters and provides an introduction to the concept of a collection and analysis
of algorithms. Part II includes the next four chapters, which cover introductory
and underlying issues that affect all aspects of data structures and algorithms as
well as linear collections (stacks, queues, and lists). Part III covers the concepts of
recursion, sorting, and searching. Part IV covers the nonlinear collections (trees,
heaps, hashing, and graphs). Each type of collection, with the exception of trees,
is covered in its own chapter. Trees are covered in a series of chapters that explore
their various aspects and purposes.

Chapter Breakdown

Chapter 1 (Introduction) discusses various aspects of software quality and pro-
vides an overview of software development issues. It is designed to establish the
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PREFACE

appropriate mindset before embarking on the details of data structure and algo-
rithm design.

Chapter 2 (Analysis of Algorithms) lays the foundation for determining the
efficiency of an algorithm and explains the important criteria that allow a devel-
oper to compare one algorithm to another in proper ways. Our emphasis in this
chapter is understanding the important concepts more than getting mired in heavy
math or formality.

Chapter 3 (Collections) establishes the concept of a collection, stressing the
need to separate the interface from the implementation. It also conceptually intro-
duces a stack, then explores an array-based implementation of a stack.

Chapter 4 (Linked Structures) discusses the use of references to create linked
data structures. It explores the basic issues regarding the management of linked
lists, and then defines an alternative implementation of a stack (introduced in
Chapter 3) using an underlying linked data structure.

Chapter 5 (Queues) explores the concept and implementation of a first-in, first-
out queue. Radix sort is discussed as an example of using queues effectively. The
implementation options covered include an underlying linked list as well as both
fixed and circular arrays.

Chapter 6 (Lists) covers three types of lists: ordered, unordered, and indexed.
These three types of lists are compared and contrasted, with discussion of the
operations that they share and those that are unique to each type. Inheritance is
used appropriately in the design of the various types of lists, which are imple-
mented using both array-based and linked representations.

Chapter 7 (Recursion) is a general introduction to the concept of recursion and
how recursive solutions can be elegant. It explores the implementation details of
recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 8 (Sorting and Searching) discusses the linear and binary search algo-
rithms, as well as the algorithms for several sorts: selection sort, insertion sort,
bubble sort, quick sort, and merge sort. Programming issues related to searching
and sorting, such as using the Comparable interface as the basis of comparing
objects, are stressed in this chapter. Searching and sorting that are based in par-
ticular data structures (such as heap sort) are covered in the appropriate chapter
later in the book.

Chapter 9 (Trees) provides an overview of trees, establishing key terminology
and concepts. It discusses various implementation approaches and uses a binary
tree to represent and evaluate an arithmetic expression.

Chapter 10 (Binary Search Trees) builds off of the basic concepts established in
Chapter 9 to define a classic binary search tree. A linked implementation of a
binary search tree is examined, followed by a discussion of how the balance in the



tree nodes is key to its performance. That leads to exploring AVL and red/black
implementations of binary search trees.

Chapter 11 (Priority Queues and Heaps) explores the concept, use, and imple-
mentations of heaps and specifically their relationship to priority queues. A heap
sort is used as an example of its usefulness as well. Both linked and array-based
implementations are explored.

Chapter 12 (Multi-way Search Trees) is a natural extension of the discussion of
the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are
examined and implementation options are discussed.

Chapter 13 (Graphs) explores the concept of undirected and directed graphs
and establishes important terminology. It examines several common graph algo-
rithms and discusses implementation options, including adjacency matrices.

Chapter 14 (Hashing) covers the concept of hashing and related issues, such as
hash functions and collisions. Various Java Collections API options for hashing
are discussed.

Chapter 15 (Sets and Maps) explores these two types of collections and their
importance to the Java Collections API.

Appendix A (UML) provides an introduction to the Unified Modeling
Language as a reference. UML is the de facto standard notation for representing
object-oriented systems.

Appendix B (Object-Oriented Design) is a reference for anyone needing a
review of fundamental object-oriented concepts and how they are accomplished
in Java. Included are the concepts of abstraction, classes, encapsulation, inheri-
tance, and polymorphism, as well as many related Java language constructs such
as interfaces.

Supplements

The following supplements are available to all readers of this book at www.aw
.com/cssupport.

m Source Code for all programs presented in the book

m Full case studies of programs that illustrate concepts from the text, includ-
ing a Black Jack Game, a Calculator, a Family Tree Program, and a Web
Crawler

The following instructor supplements are only available to qualified in-
structors at Pearson Education’s Instructor Resource Center, http://www
.pearsonhighered.com/irc. Please visit the Web site, contact your local Pearson
Education Sales Representative, or send an e-mail to computing@pearson.com,
for information about how to access them.
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s Solutions for selected exercises and programming projects in the book
s Test Bank, containing questions that can be used for exams

» PowerPoint® Slides for the presentation of the book content
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