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Preface

This book is intended as a one-semester or two-semester introductory treatment of
differential equations and their applications. It is designed for students in mathematics,
engineering, or science who have successfully completed the basic sequence of courses
in calculus.

Because of the importance of differential equations in a variety of engineering
and science areas, there are a number of applications to problems in the physical sci-
ences, as well as some in the social and life sciences, that are prominent throughout
the text. However, I have tried to avoid the temptation of introducing a multitude
of applications in many diverse areas of application. My experience is that students
are often distracted by too many different types of applications. A few basic applica-
tions readily make the point about the important role of differential equations in the
real world. Moreover, I have kept the discussions involving applications at an ele-
mentary level so that a minimal background in the various sciences is required of
the student or instructor to follow or understand them. In addition, I have tried to
maintain a close relationship between mathematical theories and applications, when-
ever possible, by providing physical interpretations of some of the mathematical
results.

The text contains the standard material that is found in the majority of intro-
ductory texts on differential equations, but contains some distinctive features that
we list below.

Distinctive Features

e Linear first-order equations: A separate discussion of the notions of homoge-
neous and particular solutions in addition to the standard integrating factor
technique for solving first-order linear equations (Chapter 2). I believe this pro-
vides a unifying point of view that is useful in later chapters dealing with
linear equations of higher order.

e Green’s function: Another novel feature of the text is the introduction of the
causal Green’s function (Chapter 5) for handling nonhomogeneous initial value
problems in a systematic and physically meaningful fashion. This function is
linked in Chapter 6 to the impulse response function which is basic in engi-
neering applications involving the analysis of linear systems.

® Qualitative methods: Also included is a brief discussion of the qualitative
methods used in oscillation theory (Chapter 5) and the stability of solutions
of nonlinear systems of equations (Chapter 9). These brief exposures to quali-
tative methods permit the student to see how the general behavior of solutions
to certain differential equations can still be determined in the absence of an
explicit solution function.

xiii



Xiv

PREFACE

o Worked examples: There are over 220 numbered worked examples, each of
which is generally indicative of typical problems to be found in the exercise
sets.

e Exercises: Nearly 1800 problems are included in the exercise sets, containing
a blend of drill-like problems, some more difficult and some that extend the
theory and applications beyond that discussed in the exposition. Problems
that are considered more challenging are marked by a star ().

Each chapter in the text begins with an overview of the topics to be covered in
that chapter. In addition, each chapter contains a chapter summary in which the
most important chapter topics are highlighted. The first eight chapters, which make
up the bulk of material covered in most one-semester courses, also contain a review
exercise set at the end of the chapter summary. Many of the chapters after the first
four chapters are independent of each other so that various arrangements of topics
can be made to suit individual course needs. Also, sections that can easily be omitted
for a shorter course are marked [0].

Answers to all odd-numbered problems are provided at the end of the text to
aid the students, while an instructor’s Answer Key is available which contains answers
to all problems (both odd and even-numbered problems). In addition, there is an
accompanying Solutions Manual which contains detailed solutions to every other
odd problem plus those even-numbered problems marked by a rectangular black
bullet m. Not included in the Solutions Manual are the review exercises at the end
of the first eight chapters.

I am grateful to:

Harvey Greenwald California Polytechnic State University
San Luis Obispo

Gilbert Lewis Michigan Technological University

Joaquin Loustaunau New Mexico State University

Bernard Marshall

Allan Krall Pennsylvania State University

Seymour Goldberg University of Maryland

Maurino Bautista Rochester Institute of Technology

Hendrik Kuiper Arizona State University

who served as reviewers. Also, I wish to acknowledge the hard work of Jody DeVoe
who worked out the answers to all the exercises. Finally, I wish to thank my editor
Peter Coveney and the entire production staff of HarperCollins for the fine job they
did in getting this text published in a timely manner.

L. C. Andrews
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1/BASIC CONCEPTS

1.1 Introduction

The theory of differential equations (DEs) has played an important role in science
and engineering since the invention of the calculus by Newton' and Leibniz.* Prob-
lems in the physical sciences have subsequently been investigated primarily by formu-
lating them as DEs. The first problems studied from this point of view came mostly
from the field of mechanics.

The role of DEs in solving problems in mechanics is nicely illustrated by con-
sidering Newton’s second law of motion. In beginning physics courses this law is
commonly introduced by the simple algebraic formula

F =ma

For a single “particle” in motion, F denotes the force acting on the particle (which
may be simply its weight), m is the mass of the particle (generally assumed constant),
and a is its acceleration. In solving problems in mechanics, however, we are usually
concerned also with the velocity and position of the particle as a function of time,
not just with its acceleration. We may recall from calculus that acceleration is the
time derivative of velocity v = v(t), that is, a = dv/dt. Hence, Newton’s second law
can also be expressed by the equation

dv
F——ma?

Moreover, if y = y(t) is the position of the particle at time ¢, then its velocity is related
by v = dy/dt. Using this relation, we see that dv/dt = d?y/dt?, and Newton’s second
law now assumes the additional form

Because they involve derivatives of unknown quantities, these last two equations
are examples of DEs. Clearly, DEs can evolve quite naturally in the formulation of
even rather simple problems in physics. Of course, DEs are now used extensively in
all areas of physics and engineering, and more recently have also found their way
into the social and life sciences.

' Sir Isaac Newton (1642—1727) was born on Christmas Day in the countryside of England. Along with
Leibniz, he is credited with the invention of the calculus (see also Section 1.6).

! Gottfried Wilhelm von Leibniz (1646-1716) was born in Leipzig. Known as both a philosopher and
mathematician, he is credited with building a remarkable system of modern philosophy and being co-
developer of the calculus (see also Section 1.6).
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1.2 Classification of DEs

By a differential equation we mean simply an equation that is composed of a single
unknown function and a finite number of its derivatives. One of the simplest examples
that occurs early in the calculus is to find all functions y for which

y =1k (1)

where f(x) is a given function. For instance, if f(x) = x?, the unknown function y is
obtained through a simple integration to yield

y=1‘3—+c )

where C is a constant of the integration which can assume any value.

Most of the DEs that concern us in this text are not of the simple variety as
described by Equation (1). Typical examples, some of which we discuss in later chap-
ters, include the following:

y =x?y? €)

y" + k*y = sin x 4)
y'+bsiny=0 %)

V' 4+ xy’ + 5y =2 (6)
() +3xy=1 (7)
a’u.. = u, — ku, (8)
=0 )

Uz T 2Wsepy + Uy = 0 (10)

In order to provide a framework in which to discuss various solution techniques
for DEs, it is helpful to first introduce classification schemes for ‘the equations. For
example, if the unknown function y appearing in a DE depends on only a single in-
dependent variable, say x, the equation is said to be an ordinary differential equation
(ODE). Most of the DEs in this text are ODEs. When the unknown function depends
upon more than one independent variable, the derivatives will be partial derivatives
and the equation is then called a partial differential equation (PDE). Examples of
ODEs are given by (3) through (7) above, while (8) through (10) are PDEs.



