Concepts in Biotechnology

History, Science and Business

Klaus Buchholz and John Collins

Concepts in Biotechnology

History, Science and Business

WILEY-VCH Verlag GmbH & Co. KGaA

The Authors

Prof. em. Dr. Klaus Buchholz Technical University Braunschschweig

Institute for Chemical Engineering Hans-Sommer-Str. 10

Technical University Braunschschweig

38106 Braunschweig Germany

Prof. em. Dr. John Collins

Life Sciences Faculty c/o Helmholtz Centre for Infection Research - HZI AG Directed Evolution Inhoffenstr. 7 38124 Braunschweig

Germany

errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

All books published by Wiley-VCH are carefully

in these books, including this book, to be free of

produced. Nevertheless, authors, editors, and publisher do not warrant the information contained

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the

British Library. Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the

Internet at http://dnb.d-nb.de.

© 2010 WILEY-VCH Verlag & Co. KGaA,

Boschstr. 12, 69469 Weinheim, Germany All rights reserved (including those of translation into

other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Cover Illustration:

Production fermenters with kind permission by Roche Penzberg, Germany Cover Adam Design, Weinheim Typesetting Thomson Digital, Noida, India

Printing and Binding betz-druck GmbH, Darmstadt

Printed in the Federal Republic of Germany Printed on acid-free paper

ISBN: 978-3-527-31766-0

Klaus Buchholz and John Collins

Concepts in Biotechnology

Related Titles

Nicolaou, K. C., Montagnon, T.

Molecules that Changed the World

385 pages

2008

Hardcover

ISBN: 978-3-527-30983-2

Sneader, W.

Drug Discovery

A History

472 pages

Softcover

ISBN: 978-0-471-89980-8

Ho, R. J. Y., Gibaldi, M.

Biotechnology and Biopharmaceuticals

Transforming Proteins and Genes into Drugs

576 pages

2003

Softcover

ISBN: 978-0-471-20690-3

Greenberg, A.

The Art of Chemistry

Myths, Medicines, and Materials

384 pages

2003

Hardcover

ISBN: 978-0-471-07180-8

Sapienza, A. M., Stork, D.

Leading Biotechnology Alliances

Right from the Start

216 pages

2001

Hardcover

ISBN: 978-0-471-18248-1

For Diana and Marie-Christiane

Preface

Over the last century the development of *Biotechnology* (BT) has followed fascinating pathways to influence ever more aspects of our lives and to provide significant contributions to the improvement of the quality of life. BT flourished in parallel with biological sciences as a result of insights into the molecular details of genetics and the control of biochemical reactions. Following a long-standing tradition, this knowledge was translated by commercial application for human benefit. It enabled biological pathways to be manipulated and even created for the purpose of manufacturing products and developing processes and services on an industrial scale. Historically, controlled fermentation was used to provide efficient storage for food thus enabling a population to survive periods of cold or drought. By the end of the last century biotechnology had developed into a science and engineering discipline in its own right and is considered to be a field of industrial activity with major economic relevance. The applications of BT extend beyond historical tradition, ranging from production of chemicals, bio-fuels and pharmaceuticals to ensuring a continued supply of clean water.

This book reviews the progress of biotechnology over time and highlights the seminal events in this field. It gives an introduction to the main developments, the principles or concepts, and key researchers involved in pioneering work and in conclusion, attempts to extrapolate to further advances expected in the near future. In view of the extensive range of biotechnological activities it was necessary to concentrate on essentials, illustrated with selected examples, as opposed to using an encyclopedic approach. This book is intended to guide the reader through the diverse fields of activity in BT and encourage further reading in the form of books, specialised reviews and original literature as provided in the reference sections. It is envisaged that the readership of this book will include students of biology, biotechnology and biochemical engineering, in addition to scientists and engineers already engaged in or proposing to work in the fields of BT and related disciplines. It may also serve as a broad introduction to BT for other readers who are interested in an overview of the subject, ranging from historical aspects to the latest developments which are largely a result of the accelerated research in molecular biology and bioinformatics that has taken place over the last 20 years.

Concepts in Biotechnology: History, Science and Business. Klaus Buchholz and John Collins Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 978-3-527-31766-0

The historical aspects of BT are discussed in the opening chapters which highlight the role of inquisitiveness and the thirst for knowledge and understanding of natural processes. This involves a discussion of reputation-building, the interplay of economics and business as well as the role of and dependence on theories. We trace the developments in chemistry and physics that became a prerequisite for the study of the chemical nature of the components involved in biological processes such as brewing, wine and bread making. Heated discussions centring on both the vitalist and chemical theories resulted not only in the emergence of theories and paradigms but also in their reversal. The close interaction of scientists, craftsmen and industry together with significant stimulus, promoted continued research.

Pasteur and Koch established the science of microbiology. A few decades later Buchner finally refuted the last metaphysical hypothesis that processes in living cells required a 'vis vitalis', a vital factor and following this biochemistry emerged as a new speciality. Biotechnological engineering was based on more precise control of the microbial fermentations involved in food processing including large-scale processes for the manufacture of beer, wine, cheese, bread etc. together with the use of sterile starting materials. This led to the subsequent production of fuels and chemical components for polymers and explosives particularly during war time, and the manufacture of antibiotics and vaccines. This in turn stimulated detailed studies on the manufacture of products from microbial fermentations. By the midtwentieth century, biotechnology had become an accepted speciality.

Basic research in biochemistry, molecular biology and genetics dramatically broadened the field of life sciences and at the same time unified them by the study of genes and their relatedness throughout the evolutionary process. In Part 2 we discuss the development of this fruitful interplay and describe how it broadened the scope of accessible products and services, at the same time making production cheaper, safer, more reproducible and more reliable. Rapid acceleration of gene and protein analysis caused an explosion of data which led to the emergence of bioinformatics. This opened up new avenues for medical analysis that was orientated more towards preventive measures rather than corrective intervention. This is a continuing trend which is substantiated by the prediction that during the next few years affordable analysis of the complete genetic potential of an individual will be available within hours. New areas of research have evolved such as systems biology in which living systems can be successfully modelled as networks of ever-increasing complexity. As the volume of information increases and modelling improves so does the probability that insight into potential targets for pharmaceuticals can be better translated into developing successful medicines. To foster such aims, centres for translational medicine are being founded in many cities where medical schools and hospitals participate in close interactions with basic research institutes.

The understanding of the fundamental programming of animal cells in the developing embryo and in particular the discovery of a small number of proteins capable of guiding stem cell differentiation and even the reprogramming of already differentiated cells, has opened up perspectives for a completely new and very exciting branch of biotechnology in the area of tissue and organ synthesis for regenerative medicine. In combination with advances in fertility medicine this has also led to the

cloning of animals and the production of transgenic animals. One aspect of this technology is the use of tissue cloning to produce human tissue cultures as models for inherited disease.

In Part 3 we discuss engineering and applied topics. Biochemical and bioprocess engineering constitute the basis for translating scientific innovation and development into industrial processes. They represent an interdisciplinary field based on molecular biology, biochemistry and engineering disciplines. As a result of the progress in molecular biology, new tools known as the 'omics' were developed: genomics, proteomics and metabolomics, to mention only the most common. Biosystems engineering or systems biotechnology, integrates the approaches and the extensive volume of data derived from these specialities and from bioreaction engineering in a 'holistic' approach, using bioinformatics tools.

Industrial biotechnology, with its historical roots, continues in diverse industrial fields of activity including food and feed and commodities such as enzymes for use in detergents, bio-fuel and energy production, polymer manufacture and the development and production of many drug constituents, as well as providing services, for example in waste treatment and other processes related to environmental protection.

The approval in 1982 of recombinant human insulin produced in E. coli and developed by Genentech in cooperation with Eli Lilly in the late 1970s, was an historical landmark. By 2006, some 165 biopharmaceuticals had been approved in the EU and/or the USA for human use. This illustrates the emergence and rise of recombinant technologies which constitute the basis of pharmaceutical biotechnology. Today, approximately one in four of all genuinely new drugs currently entering the market is a biopharmaceutical and in 2008 over 400 biopharmaceuticals were in various stages of clinical evaluation. These include hormones, soluble hormone receptors (as hormone antagonists), blood factors, thrombolytics, interferons, monoclonal antibodies, vaccines and therapeutic enzymes. Selected aspects of engineering and production processes together with information relating to their use are discussed in this chapter. Data on industrial development, products, companies and economics are also presented.

The potential of transgenic plant biotechnology is to create crops that produce higher yields and are able to grow on less fertile land in order to feed the growing world population. Crops should be resistant to pests and require less chemical treatment, notably with insecticides, fungicides, herbicides and fertilizers, and exhibit low environmental impact. The majority of agricultural scientists are convinced that such crops can be delivered by the exploitation of molecular breeding strategies. Food production has risen considerably over the decades in terms of a 'Green Revolution', most notably in developing countries, but the increase in per capita food supply has been small. Hence research in recombinant food production is considered to be a necessary part of the strategies to ensure adequate nutrition. Nevertheless, debates over the risks of the technology have evoked conflicts and created a critical, even negative publicity, particularly in Western Europe.

BT offers in general a sustainable method of production, based mostly on renewable resources with minimal or no waste and by-products that can be recycled or reused, for example as feed components. There are manifold interactions with political, social, economic and environmental issues. Laws, regulations and ethical concerns pertinent to biotechnology are important topics of discussion although there are dramatic differences in legislation between countries. Current efforts are centred around establishing common global regulations including the removal of unfair unilateral advantages and support for health care and economies in developing countries. The regulatory influences which affect how science is carried out and technology is applied are addressed in each chapter. In addition to the underlying scientific concepts, further information is presented in each chapter on the use of products, along with data on industrial activities and production.

The increase in computing power due to the invention and continued development of microchips via nanotechnology has pioneered and driven a revolution in communication during the last three decades. At least one computer, television and mobile telephone have found their place in essentially every home. Biotechnology has also undergone a corresponding development, although perhaps not so immediately identifiable at the level of consumer goods in the shops. There is, however, hardly an area of human activity which has not been affected by the recent biotechnological revolution. We hope that after completing our book, the readers will feel that they have a better understanding of how and why this revolution took place, its roots and its further potential to improve so many aspects of our lives.

Acknowledgements

We are most grateful for comments on the manuscript from a number of friends and colleagues as well others who agreed to have their photographs taken for inclusion in the book. Their comments contributed to the readability of the text, led to the avoidance of certain errors and extended the knowledge base. We, the authors take full responsibility for any remaining mistakes.

In particular thanks are due to Anthony (Tony) C. R. Samson, Karl Simpson, Raimo Franke, Heidi Lloyd-Price, and Erik Pollmann, Ulrich Behrendt, Sonja Berensmeier and Volker Kasche for significant information and relevant advice.

Further valuable information and assistance was contributed by Robert Bud, Arnold Demain, Albert J. Driesel, Reinhard Hehl, Dietmar Hempel, Gerhard Höfle, Hans-Joachim Jördening, Peter Rapp, Jürgen Seibel and Hermann Stegemann. We would also like to thank Frank Weinreich for his wise suggestions during the final stages of converting our manuscript into a book. JC is grateful to the Helmholtz Centre for Infection Research, Braunschweig (HZI; formerly the GBF) for funding the transport costs to international meetings.

This book is dedicated to our wives Diana Buchholz and Marie-Christiane Collins without whose support we could not have completed this project.

Abbreviations and Glossary

Acre $4046 \,\mathrm{m}^2$

ADM Archer Daniels Midland (starch producing and converting

company, USA)

ADP adenosine diphosphate
7-ACA 7-Aminocephalosporanic acid

7-ADCA 7-Aminodesoxycephalosporanic acid

6-APA 6-Aminopenicillanic acid

AIChE American Institute of Chemical Engineers

AMP adenosine monophosphate

Array CGH Array Comparative Genome Hybridization, for example for

comparing (malignant) biopsy material with DNA from

normal tissue

ATP adenosine triphosphate

BAC libraries (BACs) bacterial artificial chromosome libraries

BHK baby hamster kidney (cells)
BMP bone morphogenetic protein
BMS Bristol Meyers Squibb (USA)

bn billion

BOD Biological oxygen demand (of waster water)

BP Before present

BPTI Bovine pancreatic trypsin inhibitor

BT Biotechnology
Bt Bacillus thuringiensis
C&EN Chem. Eng. News

CCD computational cell dynamics

cDNA copy DNA, reverse transcribed from mRNA

CDR complementarity-determining region of an antibody
CEPH Centre d'études des polymorphisms humains, Paris,

France (The Centre for the Study of Human

Polymorphisms)

CFD computational fluid dynamics

CFTR Cystic fibrosis transmembrane conductance regulator

cGMP current Good Manufacturing Practice

Concepts in Biotechnology: History, Science and Business. Klaus Buchholz and John Collins Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 978-3-527-31766-0

CHO Chinese hamster ovary (cells)

CIP clean in place
CMV Cytomegalie virus
CNV copy number variation

CP capsid or coat protein (of virus)
CSF Colony stimulating factor
Cultivars cultivated plant varieties
2D two dimensional

DARPins Designed Ankyrin Repeat Proteins 2DE two dimensional electrophoresis

2DE IEF/SDS-PAGE two dimensional electrophoresis combined with IEF and

SDS-PAGE

DGT direct gene transfer (including particle bombardmet)

DHA docosahexanoic acid

dm dry matter

2D-PAGE two-dimensional gel electrophoresis
2DE IEF/SDS-PAGE two dimensional electrophoresis method

DH dehydrogenase

DOE US

Department of Energy, United States of America

DPN⁺

diphosphonucleotide (is identical with NAD⁺)

DPNH

hydrogenated diphosphonucleotide (is identical with

NADH)

dt/ha decitonnes (0,1 t) per hectare
€ EURO, 1.40 \$ (Oct. 2010, mean)
EBIT earnings before interest and taxes

E. coli Escherichia coli
EF environmental factor
EI environmental index

ELISA enzyme linked immunosorbent assay

EMEA European authority for approval of pharmaceuticals

EP epothilone

EPA Environmental Protection Agency (USA)

EPA eicosapentanoic acid

Epitope specific region on a protein recognized by an antibody

EPC European patent convention (5 October 1973)
EPO European patent office or Erythropoietin

ER endoplasmatic reticulum ESC or ES embryonic stem cells

ESI-MS electrospray-ionisation mass spectrometry
ESI-TOF MS/MS electrospray-time of flight-mass spectrometry

EST expressed sequence tags; short DNA fragments obtained by

random sequencing of clones from cDNA libraries

EU European Union

FAO Food and Agriculture Organization (USA)

FBA flux balance analysis

FDA Food and Drug Administration (USA)

fructose-1,6-diphosphate FDP

flux distribution of the central metabolic pathways Fluxome

feet (30.5 cm) Ft. gallon (3,78 L) Gal

GC-MS coupled gas chromatography-mass spectrometry

genetically modified; GM

GMO genetically modified organism generally recognized as safe GRAS Good Manufacturing Practice **GMP** G protein coupled receptors **GPCRs**

GlaxoSmithKline GSK ha hectar, 10 000 m2

hGH human growth hormone

HIV Human immunodeficiency virus

hl hectoliter (1001)

hypersensitive response HR high throughput screening HTS

isoelectric focusing IEF

IFN interferon

IgG immune globulin G

IL interleukin In. inch (2.54 cm) i.v. intravenous

IACS Journal Am. Chem. Soc. 1&1 Johnson & Johnson

LC-MS liquid chromatography-mass spectrometry linkage disequilibrium in population genetics LD (LOD score) leucine-rich-repeat proteins, for example ankyrin LRR

monoclonal antibody mAB

MALDI-TOF-MS Matrix-Assisted-Laser-Desorption/Ionization - Time-Of-

Flight-Mass-Spectrometry

MDR multi drug resistant metabolic flux analysis MFA

mass Index MI micro RNAs miRNAs million mn

Mtoe million tons oil equivalents Mw molecular weight, molar mass

m-Arrays micro-arrays

Nicotinamide-adenine-dinucleotide NAD

hydrogenated NAD NADH NBF new BT firm

NCE new chemical entity

NGOs non governmental organizations

Abbreviations and Glossary

NIH National Institutes of Health (USA)

NK cells natural killer cells

NMR nuclear magnetic resonance

NRRL Northern Regional Research Laboratory (USA)
NSO mouse myeloma derived mammalian cells

ON oligonucleotides
ORF open reading frame
OS oligosaccharides

OTA Office of Technology Assessment (USA)
PAGE polyacrylamide gel electrophoresis
PAT process analytical technology

PDO 1,3-propanediol

PDR pathogen-derived resistance

PEG polyethylene glycol

PEGylation attachment of polyethylene glycol
PET positron emission tomography
PHB polyhydroxybutyrate (a polyester)
pI Ionic strength (logarithmic scale)

Plastids Intracellular organelles, e.g., chloroplasts that have their

own double stranded DNA

pO₂ oxygen partial pressure

Pound 453 g

PR pathogenesis related PR plant disease resistance

PS iPS and piPS Pluripotent stem cells, induced pluripotent

stem cells, protein-induced pluripotent stem cells

PSTI Human pancreatic secretory trypsin inhibitor

QTL quantitative trait locus QM quality management R resistance (genes)

rasiRNAs repeat-associated small interfering RNA.s

R&D research and development

rDNA recombinant DNA

rDNA technologies recombinant DNA technologies

rh recombinant human

RNAi interfering RNA, RNA interference

rPC real time PCR rRNA ribosomal RNA

\$ US \$, corresponding to 0,71 € (Oct. 2010, mean)

SAGE serial analysis of gene expression

SDA stearidonic acid

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC size exclusion chromatography

SIP sterilization in place siRNA small interfering RNA

short hairpin RNA shRNA

single nucleotide polymorphism SNP

stirred tank reactor STR SUB single use bioreactor tonnes per year t/a TMtrade mark

TNF Tumor necrosis factor Tissue plaminogen activator tPA

the number of times a transcript is translated. Translation capacity

US Department of Agriculture **USDA**

US dollar (see \$) US\$

YAC libraries. yeast artificial chromosome. libraries

Part One History