COMPUTER-ASSISTED
INSTRUCTION
and
INTELLIGENT TUTORING
SYSTEMS

Shared Goals and
Complementary Approaches

Edited by
JILL H. LARKIN
RUTH W. CHABAY

[EA

(743" 9461189

COMPUTER-ASSISTED

INSTRUCTION
and

INTELLIGENT TUTORING
SYSTEMS:

Shared Goals and
Complementary Approaches

L

E9461189

Edited by
JILL H. LARKIN
RUTH W. CHABAY
Carnegie Mellon University

ELAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
1992 Hillsdale, New Jersey Hove and London

Carol Scheftic

Editor for Content and Style

during the crucial early period of the book’s development

Copyright © 1992 by Lawrence Erlbaum Associates, Inc.

All rights reserved. No part of this book may be reproduced in any form, by
photostat, microform, retrieval system, or any other means, without the prior written

permission of the publisher.
Lawrence Erlbaum Associates, Inc., Publishers

365 Broadway
Hillsdale, New Jersey 07462

Library of Congress Cataloging-in-Publication Data

Computer-assisted instruction and intelligent tutoring systems :
shared goals and complementary approaches / edited by J.H. Larkin,
R.W. Chabay.
p. cm.

Includes bibliographical references and index.

ISBN 0-8058-0232-0.—ISBN 0-8058-0233-9 (pbk.)

1. Computer-assisted instruction. 2. Intelligent tutoring
systems. I. Larkin, J. H. (Jill H.) II. Chabay, R. W. (Ruth W.)
LB1028.5.C5288 1991
371.3'34—dc20

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

COMPUTER-ASSISTED
INSTRUCTION

and

INTELLIGENT TUTORING
SYSTEMS:

Shared Goals and
Complementary Approaches

TECHNOLOGY IN EDUCATION SERIES

Edited by
Raymond S. Nickerson

Nickerson/Zodhiates * Technology in Education:
Looking Toward 2020

Larkin/Chabay ¢ Computer-Assisted Instruction
and Intelligent Tutoring Systems: Shared Goals
and Complementary Approaches

Bruce/Rubin ¢ Electronic Quills: A Situated
Evaluation of Using Computers for Writing in
Classrooms

Contents

Introduction 1
Jill H. Larkin and Ruth W. Chabay, Editors

The purpose of this book 7
Complementary Approaches 1
Shared Principles 6

Value of Interaction 7
Acknowledgements 7

Summary of Chapters and Programs 9

. The Design of Computer-Based Mathematics

Instruction 11
Sharon Dugdale

Introduction 11

Example 1: Sort Equivalent Fractions 16
Example 2: Darts 22

Example 3: Green Globs 28

Example 4: A Hypothetical Fractions Tutor 36
Summary and Conclusion 42

From Syntax to Semantics in Foreign Language CAI 47
Gerald R. Culley

Syntax: Generative Computer Assisted Instruction 48
Feedback 49
“Invisible” Review 50
Efficiency of Development 50
Limitations 52
Semantics: Interaction with Meaning 54
The Adventure Game Format 55
Instructional Features 56
How Does the Program “Understand” the Student? 58
Recognition 59
Spawning and Unspawning Entities 62
Action 63

Vi

CONTENTS

LISP Intelligent Tutoring System: Research in
Skill Acquisition 73
Albert T. Corbett and John R. Anderson

LISP and an lllustrative Interaction with LISPITS 74
LISPITS: Assessment and Current Use 8171
Theoretical Principles Underlying LISPITS 82
Model Tracing: Implementing LISPITS 88

Skill Acquisition Research with LISPITS 93

Model Tracing and Student-Controlled Feedback 99
Conclusion 107

Knowledge Representation and Explanation in GIL,

An Intelligent Tutor for Programming 111
Brian J. Reiser, Daniel Y. Kimberg, Marsha C. Lovett,

Michael Ranney

Problem Solving Knowledge in Intelligent Tutors 177

GIL: A Programming Tutor That Constructs lts Own
Explanations 122

Conclusions 144

A Practical Guide for the Creation of
Educational Software 151
Ruth W. Chabay and Bruce A. Sherwood

Purpose 151

A Unique Medium with Unique Design Challenges 152
Displays 155

Interactivity 170

Input analysis 175

User Control 179

Hints for Development 183

Conclusion 186

Contents vii

Realizing the Revolution: A Brief Case Study 187
George Brackett

Slide Shop 189

Issue: Hardware Requirements 7190

Issue: Time, Effort ... and Money 7192

Issue: The Effects of Market Orientation 7195
Conclusion 197

SHERLOCK: A Coached Practice Environment for
an Electronics Troubleshooting Job 201
Alan Lesgold, Susanne Lajoie, Marilyn Bunzo, Gary Eggan

SHERLOCK's Task Domain 203

Principles Guiding SHERLOCK’s Development 205
Examples 212

Implementation of the System 2717

Some Pedagogical Issues 235

From PROUST to CHIRON: ITS Design as lterative
Engineering; Intermediate Results are Important! 239
Warren Sack and Elliot Soloway

Introduction: Motivations and Goals 239

Description of PROUST 241

Can PROUST Teach What it's Supposed to Teach? 248

Can PROUST Perform the Task it Teaches? 254

CHIRON: Answers to Questions Raised by Proust 261

Conclusions 270

Author Index 277

Program Index 278

Subject Index 279

Introduction

Jill H. Larkin and Ruth W. Chabay, Editors
Center for Design of Educational Computing, Carnegie Mellon University

THE PURPOSE OF THIS BOOK

Two groups of individuals share a vision that computers can provide
excellent instruction for large numbers of students. The first of these groups we
call developers of computer-assisted instruction (CAI). This group consists
predominantly of experienced teachers and educational researchers, with strong
backgrounds in the subject matter of their programs. The second group we call
developers of intelligent tutoring systems (ITS). This group consists
predominantly of researchers in cognitive psychology and computer science who
develop principles of learning and apply them in instructional programs.

Unfortunately, these groups have had few vehicles for sharing ideas or
programs. Different backgrounds and settings have meant reading different
journals and attending different conferences. The purpose of this book is to
foster a mutual understanding of shared issues and complementary approaches so
as to further powerful educational applications of computing.

The following pages first summarize the complementary, but distinct,
approaches of CAI and ITS, and then discuss shared issues toward which these
complementary approaches are directed.

COMPLEMENTARY APPROACHES

Central Aims

The aim of CAI programs is to address existing needs of particular groups of
students. The CAI developer wants to produce the program that has the best
chance of teaching effectively and applies to this end all available experience and
expertise. CAI programs are specific and hand-crafted for the domain, topic, and

2 Larkin & Chabay

students addressed. With these specifically tailored programs, CAI pushes the
frontier of the best that can be done with current technology and imaginative
techniques.

In contrast, the aim of ITS developers is to implement in programs a set of
instructional principles sufficiently general to provide effective instruction for a
variety of teaching tasks. ITS programs are strongly rooted in research on the
psychology of learning. With large programs that provide instruction for many
tasks (e.g., a significant part of a course), ITS pushes the frontier of knowledge
about what general instructional techniques work and why.

Instructional Models

CAI programs do not follow a single theoretical model of instruction. In
many CAI programs, the instruction emulates (in a form appropriate to the
computer medium) interactions that might occur between a student and an
excellent teacher. Other programs attempt to create an engaging, motivating
environment that encourages purposeful exploration in a domain. A rich
diversity of environments and problems is often a goal in CAI, and a suite of
programs developed for a single course may vary significantly in goals, tasks,
and style.

CALI programs reflect their developers’ experienced beliefs about good
teaching and good design for the computer medium. Some of the most
interesting programs derive from developers’ intuitions about activities well-
suited to the medium, rather than from traditional instruction in the domain.
Learning goals can be implicit in CAI, and activities may or may not be
explicitly related to the tasks the student will be expected to perform after
instruction.

ITS programs, in contrast, contain an explicit computer-implemented model
of instruction. It is this model, and not the hand-crafted code of the developer,
that determines how the program responds to the student. This model of
instruction consists of two parts: (a) a performance model capable of performing
the tasks the student is learning to perform, and (b) a teaching model that
compares the student’s actions with those of the performance model, and
determines what (if any) reactions the ITS will provide to the student.

The performance model usually consists of a large set of fine-grained
inference rules (although other techniques may be used in conjunction with these
rules). Each rule consists of actions together with conditions under which these
actions should occur. It is important that the rules be small in scope, because
then they can be combined flexibly, in different ways, to do different activities.
When an ITS is running, these rules are not invoked in any fixed order. Instead,
at each point in time, the program searches for the rule most likely to contribute
useful information to the current situation. This rule-based program architecture

Introduction 3

has had repeated success in building computer programs that apply large amounts
of knowledge flexibly to a variety of tasks.

The teaching model in an ITS consists of engaging the learner in a
reasoning task, and comparing the student’s actions with the set of actions that
can be generated by the performance model. This comparison lets the ITS
identify when the student does something either wrong (according to domain
knowledge) or useless in pursuit of the current task. The teaching model then
determines what (if any) advice is to be offered. Furthermore, the tasks given to
the student are designed so that (a) all inference rules in the performance model
are required to solve the full set of tasks, and (b) each inference rule is applied in
several contexts. Thus, the student has multiple opportunities to practice and
acquire the knowledge represented by each rule.

In summary, CAI programs reflect experience in teaching in a particular
domain, and consist of varied activities designed to help students increase domain
knowledge and apply that knowledge in different contexts. ITS programs have
an explicit model of the knowledge required for a domain of tasks, and the
activities they include provide systematic practice in using all relevant
knowledge.

Program Structure

CAI programs are interaction centered, reflecting the CAI model of
instruction in which the computer is an interactive medium for instruction
characteristic of excellent teachers. CAI programs are therefore built to provide a
specific kind of student interaction with the computer screen. These programs
start with a vision of this interaction, and then programming is done to make
that vision real. CAI developers see the computer screen as a programmable
interactive communications medium.

Single CAI programs are usually relatively brief (although some can be used
in many ways) and deal with only a few aspects of a domain (e.g., comparing the
size of fractions). A set of related programs, carefully coordinated by their
developer(s), can provide instruction throughout an entire course.

In contrast, ITS programs are knowledge centered, reflecting the explicit
model of performance knowledge on which they are based. Interaction with a
student consists of the model sending a message to the interface which in turn
uses its own knowledge of graphics and layout to convey the information to the
student, and to convey student input back to the central model.

ITS programs are typically comprehensive, with one program, in a single
format, providing most or all of the instruction for a large fraction of the
material in a course. The knowledge encoded for early lessons is re-used when
appropriate for later lessons, much as the student is intended to use knowledge
acquired earlier, along with new knowledge to address more complex tasks. An

4 Larkin & Chabay

ITS systematically teaches a body of knowledge by providing multiple and
varying opportunities for the student to learn each inference rule in the
performance model.

Necessary Experience

Because CAI is interaction centered and because it takes time to learn the
sensitive use of a new and difficult medium (e.g., film and television as well as
the computer), many of the best CAI programs are written by people with years
of experience. The authors in this book, for example, have up to 20 years
experience in the computer medium.

In particular, three of the CAI chapters reflect work which began in the
PLATO! instructional computing environment originating at the University of
Illinois. This environment provided a graphics screen with nearly twice the
number of pixels as the standard Macintosh, a touch interface, and the ability to
back-project microfiche—all available in the early 1970’s! The size of the
PLATO system allowed very large courses to require several hours of computer
work each week. Thus new programs could accrue hundreds or thousands of
hours of student use each semester.

In contrast, ITS is based on efforts to represent explicitly the knowledge
humans use in performing a set of tasks. Building such programs is an
extremely difficulty task, and stresses existing principles and techniques in both
psychology and computer science. Therefore, developers of ITS are usually
researchers in psychology or computer science, and have extensive experience in
both fields. In particular, they draw on about 20 years of research on detailed
processes of the human mind, and ways of characterizing these processes through
computer-implemented models.

Computer Implementation

The aim of CAl is to provide practical instruction, consisting of interactive
programs that teach effectively. Therefore CAI programs are developed under
heavy computational and other constraints (eloquently described in the chapter by
Brackett). They must respond rapidly (to support interaction and varied graphic
interactions). Without graphics and fast interaction, no CAI program described
in this book could exist in anything like its current form. Yet these programs
must run on affordable and widely available machines (low end Macintoshes and
PCs, and the educationally ubiquitous Apple II), machines with severe memory
and speed limitations.

IPLATO® is a registered trademark of The Roach Organization, Inc. The PLATO system is
a development of the University of Illinois.

Introduction 5

CAI programs are generally algorithmic in structure (i.e., describable by a
flow-chart) with user input often determining branching. Programs are organized
around the screen display, and interactions with students center on the display,
which changes in response to various inputs from the student. Algorithmic
programs can be faster and simpler than those with more complex architectures.
In CAI, the most-used languages are algorithmic languages, e.g., versions of
BASIC, PASCAL, and assembly language, as well as descendents of TUTOR
(the PLATO programming language).

In contrast, ITS programs exploit models of knowledge and teaching.
Because the human mind is complex, computational models of its functioning
are complex. Implementing them requires powerful machines and the most
sophisticated techniques of computer science research.

ITS programs can not be algorithmic because humans have abilities far
more varied than those of any algorithmic program. Instead ITS programs have
a logic based on repeatedly applying knowledge (encoded as rules) to react to a
current situation. Furthermore, content of this knowledge consists not of
numbers, but of symbols (words, phrases, rules). ITS systems are therefore
almost always written in languages that support processing of symbols and lists
(e.g., LISP, Prolog) and their rule-based extensions (e.g., GRAPES, OPS5).
ITS systems use extensively techniques of “artificial intelligence,” that is
techniques for building large programs that can incorporate large amounts of
knowledge, and use it flexibly. For efficiency, ITS programs are sometimes
written (or rewritten) in C, one of the most powerful modern algorithmic
languages.

Implications

The differing aims, constraints, and instructional models imply the
following substantial differences between CAI and ITS programs.

CAI programs are hand-crafted using deep knowledge of the domain, the
students, and the computer medium. In CAl, the interface is intuitive, and using
it is part of the instructional process. Good CAI has clarity and charm. Despite
their algorithmic architecture, the clever hand-crafting of interactions gives these
programs the feeling of freedom of interaction. Good CAI typically has been
used for many thousands of hours by varying students, although quantitative
studies of its effectiveness are rare.

In contrast ITS programs are the product of an applied science. They are
based on, and explicitly include, psychological principles of learning. The
instruction aims to provide systematically opportunities for learning all
knowledge in a carefully defined domain. These programs are often meticulously
tested with student groups, and their effectiveness can be dramatic (although there
are few demonstrations of continued utility in widespread use).

6 Larkin & Chabay

SHARED PRINCIPLES

The chapters in this book, each describing the development and nature of
one or more instructional programs, make concrete the contrasts discussed above.
However, they also illustrate a rich set of largely shared design principles for
good educational computing. The following paragraphs summarize these shared
principles, which appear as continuous themes throughout the chapters in this
book.

Engage the student in active work on central tasks

For example, Corbett & Anderson’s principles of intelligent tutoring
include providing instruction in the context of active problem solving. Chabay
and Sherwood, summarizing their experience-based guidelines for CAlI, give the
mandate “Ask, don’t tell,” and go on to discuss techniques for designing
programs that consistently engage the student in active work. This principle is
reflected by every instructional program described in this book. Students do not
passively read screens of text, or simply watch graphic simulations.

Use the interface to suggest appropriate reasoning

Displays and interfaces have long been a primary focus of CAIL In
particular, Dugdale provides an excellent description of the intricate interaction
between the domain being taught and the intricate displays that teach it. Only
recently have ITS developers given significant attention to the difficult task of
designing principled and effective graphic interactions. The chapters by Reiser
et. al, and by Lesgold et. al., discuss this work.

Center work on appropriate reasoning

Most of the time the student should be working smoothly and successfully
on important tasks. In Dugdale’s Green Globs, for example, students are free to
write whatever equations they like, with the aim of producing a graph that will
pass through “globs” placed on the screen. Any engagement in the program
means thinking about the relation between equations and their graphs. The
actual graph that does appear is itself immediate feedback on whether the
student’s thinking about this relation was accurate or not. In the ITS world,
relevant, successful, active thinking is achieved by tracing inference rules used
by the student, and by intervening with a correction or hint if the student moves
more than a step or two away from an appropriate reasoning sequence. This does
not mean the student can solve a problem in just one “correct” way—the
program’s inference rules always attempt to support any correct solution, and
often to provide strategic advice on incorrect reasoning.

Introduction . 7

Provide prompt feedback focusing attention on erroneous thinking

For example, Dugdale’s elegant CAI programs are designed so that the
interface gently prohibits many irrelevant actions, and the results of relevant
actions are immediately apparent. All of the ITS programs are designed to track
the student’s reasoning and to give increasingly detailed feedback when the
student does something wrong or irrelevant. In particular, the chapter by Reiser,
et., al., discusses the use of knowledge in the ITS to formulate this feedback.

Adapt instruction to individual student knowledge

Corbett & Anderson describe how ITS programs can adapt through selecting
the inference rules required by the task—a small set at first, more later on. In
contrast the ITS SHERLOCK (Lesgold, et. al.) provides a single set of
problems, but uses hints to suggest inferences the student finds difficult.
Dugdale’s CAI adapts to students’ knowledge by letting students set their own
tasks, within a cleverly designed environment where involvement in any task is
likely to increase skill and ability to design and solve more complex problems.
Many CAI programs (e.g., Culley’s earlier grammar programs), provide the
student with unlimited practice, together with information on success rates.
Thus students with varying initial capabilities can readily use the program as a
tool to build skill.

VALUE OF INTERACTION

Although the shared instructional principles discussed above are, of course,
implemented quite differently in ITS and CAI programs, there are also the
beginnings of joint implementations. For example, the chapter by Culley
describes how a CAI developer began explicitly to need the techniques used in
ITSs. Sack and Soloway, ITS developers, discuss both their needs for the
evaluation techniques of educational research, and for a program structure that
provides greater student interaction.

The purpose of this book is to acquaint both ITS and CAI developers with a
broad range of approaches to their common vision of broadly effective
educational computing.

ACKNOWLEDGEMENTS

We wish to acknowledge, with great appreciation, the central contributions
of the following individuals and organizations:

The James S. McDonnell Foundation which provided funding for the
conference, held in March, 1988, on which this book is based, and for
preparation of the manuscript. John Bruer, President of the Foundation, provided

8 Larkin & Chabay

intellectual and moral support to complement the financial support of his
organization. During initial planning for the book and conference, Jill Larkin
was supported by a fellowship from the Guggenheim Foundation and by a
National Science Foundation Visiting Professorship for Women.

Neither the conference nor the book would have been possible without the
resources and working environment provided by Carnegie Mellon University and
its Center for Design of Educational Computing. Additionally the Software
Engineering Institute provided excellent facilities for a technologically complex
conference.

Stanley Smith of the University of Illinois challenged and enlivened the
workshop with his demonstration of innovative chemistry programs, which
allow students to see and analyze real chemical phenomena using interactive
videodisc technology.

Carol Scheftic served ably as the central contact with authors and as editor
during the first difficult phases of manuscript preparation. Carol Scheftic and
Ruth Chabay also took full responsibility for the conference leading to this
book, while Jill Larkin managed to attend the sessions despite pneumonia.

Alice Huston patiently and meticulously read all of the ITS chapters, giving
invaluable suggestions for making these chapters readable to an audience outside
of the computer science community.

Finally, Mary McCallum provided patient expertise in proofreading,
correcting endless versions of manuscripts, tracking down detailed information,
and transferring materials (physically and electronically). She cheerfully took on
endless extra tasks both contributing directly to this book and giving time for
the editors to edit — a task more difficult than either of us had imagined.

Jill H. Larkin and Ruth W. Chabay
Pittsburgh, October, 1991

Introduction 9

SUMMARY OF CHAPTERS AND PROGRAMS

Ch. Author Program Age Level Subject matter

No. Type

1. Dugdale CAI Pre College Mathematics

2. Culley CAI/ITS? University Latin

3. Corbett & Anderson ITS University Programming in LISP
4. Reiser et al. ITS University Programming in LISP
5. Chabay & Sherwood CAI All Levels Design issues in CAI
6. Brackett CAI Pre College Slide presenter &

scientific reasoning

7. Lesgold et al. ITS Military Electronic device
troubleshooting

8. Sack & Soloway ITS? University Programming in
PASCAL

2These two chapters describe programs which are not "tutors", but which use techniques of
artificial intelligence.

