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PREFACE

This book covers several important topics on the subject of optimization of
structural and mechanical systems. Computational optimization methods have
matured over the last few years due to the extensive research by applied
mathematicians and the engineering community. These methods are being
applied to a variety of practical applications. Several general-purpose
optimization programs as well as programs for specific engineering applications
have become available recently. These are being used to solve practical and
interesting optimization problems.

The book covers state-of-the-art in computational algorithms as well as
applications of optimization to structural and mechanical systems. Formulations
of the problems are covered and numerical solutions are presented and discussed.
Topics requiring further research are identified. Leading researchers in the field
of optimization and its applications have written the material and provided
significant insights and experiences with the applications. The topics covered
include:

e

*

Optimization concepts and methods
Optimization of large scale systems
Optimization using evolutionary computations
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%* Multiobjective optimization

+* Shape optimization

+** Topology optimization

+* Design sensitivity analysis of nonlinear structural systems
+* Optimal control of structures

+$* Nonlinear optimal control

** Optimization of systems for acoustics

+$* Design optimization under uncertainty
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Optimization-based inverse kinematics of articulated mechanisms
Multidisciplinary design optimization

mesh free methods for optimization

Kriging metamodel based optimization,
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** Sensitivity-free formulations for structural and mechanical system
optimization

“* Robust design based on optimization
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*

Parallel computations for design optimization
Semidefinite programming for structural optimization.
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*

The book is suitable for advanced courses on optimization of structural and
mechanical systems. It is also an invaluable resource for researchers, graduate
students, and practitioners of optimization.

I would like to thank all the authors for their diligence and meticulous work in
writing their chapters. Without their hard work this book would not be possible. I
would also like to thank the staff at World Scientific Publishing Company for
their patience and help in finalizing the material for the book.

Finally, I would like to thank all my family members for their unending
support, patience and love.

Jasbir S. Arora
Iowa City, lowa, USA
4 December 2006
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CHAPTER 1

INTRODUCTION TO OPTIMIZATION

Jasbir S. Arora

Department of Civil and Environmental Engineering
Department of Mechanical and Industrial Engineering
Center for Computer Aided Design
The University of lowa
lowa City, lowa, U.S.A.

E-mail: Jasbir-Arora @uiowa.edu

Basic concepts of optimization are described in this chapter. Optimization
models for engineering and other applications are described and discussed.
These include continuous variable and discrete variable problems. Optimality
conditions for the continuous unconstrained and constrained problems are
presented. Basic concepts of algorithms for continuous and discrete variable
problems are described. An introduction to the topics of multiobjective and
global optimization is also presented.

1. Introduction

Optimization is a mature field due to the extensive research that has been
conducted over the last about 60 years. Many types of problems have been
addressed and many different types of algorithms have been investigated. The
methodology has been used in different practical applications and the range of
applications is continuously growing. Some of the applications are described in
various chapters of this book. The purpose of this chapter is to give an overview
of the basic concepts and methods for optimization of structural and mechanical
systems. Various optimization models are defined and discussed. Optimality
conditions for continuous variable optimization problems are presented and
discussed. Basic concepts of algorithms for continuous variable and discrete
variable optimization problems are described. Topics of multiobjective and
global optimization are also introduced. The material of the chapter is available
in many textbooks on optimization."’ It is derived from several recent
publications of the author and his co-workers.”*
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2. Optimization Models

Transcription of an optimization problem into a mathematical formulation is a
critical step in the process of solving the problem. If the formulation of the
problem as an optimization problem is improper, the solution for the problem is
most likely going to be unacceptable. For example, if a critical constraint is not
included in the formulation, then most likely, that constraint is going to be
violated at the optimum point. Therefore special attention needs to be given to
the formulation of the optimization problem.

Any optimization problem has three basic in gredients:

®  Optimization variables, also called design variables denoted as vector x.

*  Cost function, also called the objective function, denoted as f(x).

® Constraints expressed as equalities or inequalities denoted as g,.(x).

The variables for the problem can be continuous or discrete. Depending on
the types of variables and functions, we obtain continuous variable, discrete
variable, differentiable and nondifferentiable problems. These models are
described next; for more details and practical applications of the models, various
references can be consulted.”?" 1314162530

2.1. Optimization Models: Continuous Variables

Any continuous variables optimization problem can be transcribed into a
standard nonlinear programming (NLP) model defined as minimization of a cost
function subject to equality constraints and inequality constraints expressed in a
"<" form as Problem P.’

Problem P. Find the optimization variable vector x = [x, x, x,]" to minimize a
cost function f(x) subject to equality and inequality constraints:

g;(x)=0, j=110p (1)
gj(x)S:O,j:p+ltom (2)

where n is the number of variables, p is the number of equality constraints, and m
is the total number of constraints. Note that the explicit lower and upper bounds
on the variables are included in Eq. (2). However, for efficient numerical
calculations the simple form of these constraints is exploited.

The feasible set for the problem is defined as a collection of all the points
that satisfy the constraints of Egs. (1) and (2). It is also called the constraint set,
and is denoted as S:
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Sz{x‘gj(x):O,j:ltop;g_,(x)SO,j=p+lt0m} (3)
Thus the Problem P can be written simply as
minimize f (x) 4

It is important to note that the feasible set for a problem may be empty if
there are too many constraints on the problem or if there are conflicting
constraints. In general, this is difficult to determine before the problem is solved.
Only after a numerical algorithm fails to find a feasible point for the problem, we
can conclude that the set S is empty.”' In that case the problem formulation needs
to be examined to relax some of the constraints, or eliminate conflict in the
constraints. In addition, it is difficult to know, in general, if there is a solution to
the Problem P. However, the question of existence of a solution can be answered
with certain assumptions about the problem functions. It turns out that if f(x) is
continuous on a nonempty feasible set S, all constraint functions are continuous,
and all inequalities contain their boundary points (i.e., expressed as “<’" and not
simply as “<”), then there is a solution for Problem P. When these requirements
are satisfied, a robust numerical algorithm is guaranteed to converge to a solution
point.

If there are no constraints on the variables, the set S is the entire design space
and the problem is called an unconstrained optimization problem. If all the
functions are linear in terms of the variables, the Problem P is called a linear
programming (LP) problem. If the cost function is quadratic and the constraints
are linear, the problem is called a quadratic programming (QP) problem.

An inequality constraint g(x) < 0 is said to be active at a point x if it is
satisfied as an equality at that point, i.e., g;(x) = 0. It is said to be inactive if it has
negative value at that point, and violated if it has positive value. An equality
constraint is always either active or violated at any point.

In some applications, several objective functions need to be optimized
simultaneously. These are called multiobjective optimization problems. They are
usually transformed into Problem P by combining all the objective functions to
form a composite scalar objective function. Several approaches to accomplish
this objective are summarized in a later section.”*%%%77

When a gradient-based optimization method (discussed in a later section) is
used to solve Problem P, the cost and constraint functions are assumed to be
twice differentiable.
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2.2. Optimization Models: Mixed Variables

In many practical applications of optimization, discrete variables occur naturally
in the problem formulation. For example,

* plate thickness must be selected from the available dimensions,’

* material properties must correspond to the available materials, >

* structural members must be selected from a catalog, '“**%’

* number of reinforcing bars in a concrete member must be an integer,”

e diameter of rods must be selected from the available sizes,”**

 number of bolts must be an integer,”’

® number of strands in a prestressed member must be an integer.**
Discrete variables must be treated properly in numerical optimization procedures.
A mixed continuous-discrete variable optimization problem is defined next as
Problem MP.

Problem MP. A general mixed discrete-continuous variable nonlinear
optimization problem is defined by modifying Problem P to minimize the cost
function f(x) subject to the constraints of Egs. (1) and (2) with the additional
requirement that each discrete variable be selected from a specified set:

X,'ED;, D,' Z(d,'l,d,'p_,....,d,‘q,-); i:ltOI’l(/ (5)

where ng; is the number of discrete design variables, D; is the set of discrete
values for the ith variable, g; is the number of available discrete values for the ith
variable, and dj; is the kth discrete value for the ith variable. Note that the
foregoing problem definition includes integer variable as well as 0-1 variable
(on-off variables, binary variables) problems. If the problem has only continuous
variables, and the functions f and g; are twice continuously differentiable, we
obtain the Problem P. Many discrete variable optimization problems have
nondifferentiable functions; therefore gradient-based methods cannot be used to
solve such problems. However, methods that do not require gradients of
functions are available to solve such problems.

It is also important to note that the discrete variable optimization problems
usually require considerably more computational effort compared to the
continuous variable problems. This is true even though the number of feasible
points with discrete variables is finite and they are infinite with continuous
variables.



