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Preface

This book is primarily intended for researchers and engineering practitioners in sys-
tems and control, especially those engaged in the area of modeling and control of
vibrations in mechanical structures and systems. The book aims at empowering read-
ers with a clear understanding of characteristics of various vibrations, their effects on
system stability and performance, and techniques for rejecting vibrations of different
frequency ranges and their limitations. Special attention is given to recently devel-
oped vibration modeling and control techniques in high precision systems. Many
real-world examples are given {o demonstrate the modeling and control techniques.

Vibration exists in a wide spectra of engineering systems such as hard disk drives,
automotives, aerospace and aeronautic systems, manufacturing systems, etc. Vibra-
tion is undesirable in most engineering applications, lowering system performance,
wasting energy and creating unwanted noise. Although the problem of vibration
control has been studied for a long time, it remains and indeed becomes more chal-
lenging in many applications such as precision engineering and hard disk drives,
where an extremely high positioning accuracy is required. Therefore, vibration con-
trol has drawn more intensive efforts from researchers and engineering practitioners
in recent years. Itis our intention in this book to present to readers some of the recent
developments in this field.

The book presents the latest results in vibration modeling and advanced control
design for vibration attenuation in mechanical actuation systems to achieve high
precision positioning performance. It focuses on vibration and disturbance rejec-
tions using recently developed control techniques for high precision positioning, and
demonstration of the benefits gained from the applications of these techniques. The
theoretical developments and principles of control design are elaborated in detail so
that the reader can apply the techniques developed to obtain solutions with the help

of MATLAB™ . Examples are presented throughout the book so that the subject can
be better understood. A number of simulation and experimental results with compre-
hensive evaluations are provided in each chapter, except Chapters 1, 4, and 5, which
are dedicated to the review of related background knowledge.

The book summarizes a collective research effort which we have had the plea-
sure to contribute to. Many results reported in the book are due to the collaboration
with Guoxiao Guo from Western Digital Corporation, Jianliang Zhang and Jul Nee
Teoh from Data Storage Institute (DSI) of Singapore, Youyi Wang from Nanyang
Technological University (NTU), and Frank Lewis from the University of Texas at
Arlington. The research work contained in this book was mainly performed at DSI
and the School of Electrical and Electronic Engineering (EEE) of NTU, Singapore.

Xi
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Algorithms applied in magnetic recording systems were implemented at DSI and
those in the Stewart platform at the School of EEE, NTU. We would like to express
our sincere appreciation to DSI for its supportive environment and vibrant research
atmosphere. We are also sincerely grateful to Dr. Ong Eng Hong and the colleagues
in Mechatronics and Recording Channel Division of DSI, and EEE, NTU for their

support.

Lihua Xie
Chunling Du

MATLAB® is a registered trademark of The MathWorks, Inc. For product in-
formation, please contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760-2098 USA, Tel: 508 647 7000, Fax: 508-647-7001, E-mail: info@mathworks.
com, Web: www.mathworks.com.
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R™: n-dimensional real Euclidean space

R set of n X m real matrices

T n X n identity matrix

(A,B,C,D): state-space representation of a system
A|B;y Bs
Ci|D11 Dia |: compact representation of system:
C2|D21 Dao

z(k+1) = Az(k) + Biw(k) + Bou(k)
y(k) = CQLE(]C) + D21W(k') + Dggu(k)

diag{A1, A2, -+, A,}: block diagonal matrix with A;( not necessarily

square), j = 1, 2,---, n, on the diagonal
X7 transpose of matrix X
X*: complex conjugate transpose of matrix X
P >0: symmetric positive semidefinite matrix P € R™**"
P>0: symmetric positive definite matrix P € R"**"
P>Q: P — @ > 0 for symmetric P, Q € R"*"
P>Q: P — @ > 0 for symmetric P,(Q € R"»*"
a(X): largest singular value of X
Trace(X): trace of X

-1 Euclidean vector norm
wlly ly-norm of a signal {w(k)}, i.e., [lw (k).
\ k=0
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£5{[0,00)}: space of square summable sequences on {[0, c0)}.
The signal {w(k)} is said to be from £2{[0, o)} or simply ¢»
if ||[w]l2 < 0.

|G| 2: H; norm of transfer function G
|G| co: H o, norm of transfer function G
Re(): the real part of a complex number
Im(): the imaginary part of a complex number
p(): spectral radius

AGC': automatic gain control

AVC : active vibration control

deg: degree

det: determinant

DSA: Dynamic Signal Analyzer

FFT: fast Fourier transform

FXLMS: filtered-X LMS

HDD: hard disk drive

LDV: Laser Doppler Vibrometer
LFT: Linear fractional transformation
LMT: linear matrix inequality

LMS: least mean square

LQG: linear quadratic Gaussian

LTR: loop transfer recovery

MEMS: micro electro-mechanical system
MSE: mean square error

NRRO: nonrepeatable runout

PES: position error signal
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