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Chapter I.

PRELIMINARIES

In this chapter, starting with simple examples, we describe the problems
with which we will deal in this book. We also present simple examples of
our methods. First we formulate the fundamental problem, then analyse its
conditions and explore its applicability. We then formulate theorems that
follow from our results as corollaries to that fundamental problem. Then we
survey possibilities for generalization. We close this chapter by suminarizing
our notation and terminology, including the formulation of theorems not
readily available in the literature or usually formulated in a different way.

1. INTRODUCTION

1.1. General considerations and simple examples. As a first, illus-
trative example let us consider the best-known functional equation, Cauchy’s
equation

(1) flz+y) = f(=)+ fly)

with unknown function f. In a wider sense differential equations, integral
equations, variational problems, etc. are also functional equations, but here
we will use this expression in a more restrictive sense for functional equations
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without infinitesimal operations such as integration and differentiation. For a
more formal definition, see Aczél [3], 0.1. To formulate a functional equation
exactly we have to give the set of functions in which we look for solutions.
We also have to give the domain of the functional equation. In the above
example this is the set of the pairs (z,y) of the variables z and y for which
equality has to be satisfied. For example, we may look for all measurable
functions f : R — R such that (1) is satisfied for all (z,y) € [0,00] x R
Conditions such as measurability, Baire property, continuity everywhere or
in a point, boundedness, differentiability, analyticity, etc. are called regularity
conditions. If this kind of conditions are imposed on the solution, then we
say that we look for regular solutions. Otherwise, if we look for solutions
among all maps from a given set into another given set, then we say that we
look for the general solution of the functional equation.

Usually, the domain of the functional equation is the set of all tuples of
the variables for which both sides are defined. For example, if we say that
f : R — R is a solution of Cauchy’s functional equation, then it is implicitly
understood that (1) is satisfied for all (z,y) € R x R. If the domain of the
equation is not the largest possible for which both sides are defined, then
we speak about an equation with restricted domain; the term conditional
equation is also used, especially if the domain of the equation also depends
on the solution or solutions.

Cauchy’s equation is a functional equation with two variables; the vari-
ables denoted by z and y in (1). Equations like f(z) = f(-=z), f(z) =
—f(-x), f(2z) = f(z)?, or difference equations are called functional equa-
tions in a single variable. The “single variable” may also be a vector variable;
it is understood that there are no more variables in the equation than the
number of places in the unknown function or the minimal number of places
in the unknown functions — if there is more than one. Otherwise we speak
about a functional equation in several variables. This distinction is very use-
ful in practice. There is a large difference between functional equations with
a single variable and several variables: the methods used in the two cases
are quite different. In this book we deal with functional equations in several
variables. About equations in a single variable see the books Kuczma [126]
and Kuczma, Choczewski, Ger [128].

The distinction between functional equations in a single variable and in
several variables and what we have said about variables, domain, regular and
general solutions also apply to systems of functional equations.

Further simple examples of functional equations are Cauchy’s exponen-
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tial equation

(2) flz+y) = fz)f(y),
Cauchy’s power equation

(3) fzy) = f(x)f(y),
and Cauchy’s logarithmic equation

(4) f(zy) = f(z) + f(y).

Observe, that solutions f of (2) mapping ]0, oo[ into the normed algebra,
of all bounded linear operators on a Banach space gives operator semigroups.
The usefulness of semigroups in the study of evolution equations such as the
heat equation or Schrodinger’s equation is well known, see for example Hille
and Phillips [72]. The overall importance of equations (1)-(4) is due to the
fact that they describe homomorphisms.

We move toward a general theory of functional equations, and we do
not intend to study specific functional equations, except as examples, even if
they are very important.

It is a well-known phenomenon that one functional equation can deter-
mine several unknown functions. This is the situation, for example, for the
analogue of Cauchy’s functional equation with several unknown functions
which is called Pexider’s equation:

() Az +y) = fa(z) + fa(y).

Indeed, if fi1, f2, f3 : R - R, by puttingy = 0and z = 0 in (5) we may express
f2 and f3 by fi, respectively. By putting z = 0 and y = 0 simultaneously in
(5) and using the resulting relation we obtain that f = f1 — f1(0) satisfies
Cauchy’s equation (1). Hence (5) can be reduced to (1). Similar phenomena
occur often when different occurrences of the unknown function f are replaced
by f1, fa, etc., a process sometimes called “Pexiderization”.

Jensen’s equation

(6) f(x;y) =f($)-2+f(y)

can be considered as a special case of Pexider’s equation, and we obtain that
an f : R — R function is a solution of (6) if and only if the function f—f(0)
satisfies (1).
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It is also possible to consider functional inequalities. Functional inequal-
ity

(7) flz+y) < flx)+ fy)

related to Cauchy’s equation describes subadditive functions and functions
satisfying

®) 2 )= 2

; (m +y) @+ iw)
are the so-called Jensen convex functions.

We will use the above simple functional equations as illustrative exam-
ples. Their detailed study can be found in the book of Aczél [3] or in the
book of Aczél and Dhombres [20].

1.2. Simple examples: smooth solutions. Let us suppose that a
solution f : R — R of Cauchy’s equation f(z +y) = f(z) + f(y) is analytic.
Substituting y = = we obtain the equation f(2z) = 2f(z) in a single variable
z € R. Analyticity is such a strong regularity condition that even this sin-
gle variable equation has not too many analytic solutions. For the solution
f(z) =co+ c1z + -+ we obtain

Co+2C1.’E+4CzII:2+"'=2Co+261$+262.’l:2+"'

in a neighborhood of the origin, and hence that the solution can only be
f(z) = cz with an arbitrary constant ¢ = c;. Substitution shows that this is
indeed a solution of Cauchy’s equation.

The case of Cauchy’s exponential equation f(z +y) = f(z)f(y) is much
more interesting. As above, we obtain the single variable equation f(2z) =
f(z)?, and, if f : R = R is analytic, f(z) = co +c1z+ -+, then

co + 2¢1z + 4cpx® + -+ = ¢ + 2cpc1z + (2¢0c + Az 4.
Hence ¢y = c3. There are two possibilities. The first is that co = 0, which

implies that ¢, = 0 for each n, and hence f = 0. The second is that co = 1.
In this case ¢; could be arbitrary, and from the equation

n
2" = Y CiCni,
s
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using the notation ¢ = ¢;, we obtain by induction that ¢n = ¢ /nl. Hence all
analytic solutions are given by f(z) = Y o°  c"z"/n! = exp(cz). The same
method gives complex analytic solutions f : C — C, too. Let us observe that
this is a nice way to introduce exponential functions (and hence the related
functions sin, cos, sinh, and cosh) using only the most important property
of exponentiation. Note that this was Cauchy’s original motivation to in-
vestigate functional equations 1.1.(1)-1.1.(4): he wanted to avoid “circulus
vitiosus” by studying power functions; see the historical remarks in the book
of Aczél and Dhombres [20], pp. 365-371.

Now let us only suppose that the solution f : R — R is twice differ-
entiable. In the case of Cauchy’s equation, f(z +y) = f(z) + f (y), let us
differentiate both sides with respect to y. This “kills” the first term on the
right-hand side, and we obtain that f'(z +y) = f'(y) for every z,y € R
Differentiating again, but with respect to z we can “kill” the other term on
the right-hand side, too, and we obtain f” (z+y) = 0. Substitutingy = 0 we
have f"”(z) = 0, a differential equation. All solutions of this equation have
the form f(x) = co + ¢z, ¢o,c € R Substituting this into the original func-
tional equation we see that ¢y = 0, and we obtain that twice differentiable
solutions are exactly the functions f(z) = cz.

This simple example illustrates a general method to get “smooth enough”
solutions. The general tactic is to “kill” some terms by applying appropri-
ate differential operators, and to obtain differential equations by appropriate
substitutions. Usually, appropriate substitutions or use of certain symine-
tries of the equation results in a differential equation with lower degree. For
example, substituting y = 0 in the equation f'(z +y) = f'(y) we obtain
that f'(z) = ¢ with ¢ = f’(0), a first order equation. Cauchy’s exponential
equation, f(z +y) = f(2)f(y), similarly yields f'(z +y) = f(z)f'(y), and
after substituting y = 0 we obtain f'(z) = cf(z), where ¢ = f/(0).

Let us observe that in both cases, the general once differentiable solution
f : R — R is the same as the general analytic solution.

1.3. Simple examples: regularity properties. How to obtain so-
lutions of the above examples, Cauchy’s equation and Cauchy’s exponential
equation under much weaker regularity assumptions? A general way is to
prove that weak regularity conditions, say continuity or measurability of so-
lutions implies much stronger regularity conditions, their differentiability or
even analyticity. For example, let us observe that in both of the above cases
the differential equation obtained for the solutions in the previous point im-
plies directly that the solutions are analytic (see Dieudonné [49], 10.5.3).

If we have a continuous solution f : R — R, then integrating Cauchy’s
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equation over an interval [a, b] of positive length yields

. b b
f(@)(b—a) = / f(z+y)dy - / f () dy.

Substituting a new variable u = z + y we obtain

z+b b
@ =52 [ - [ 1w

b—a z+a

The right-hand side is differentiable, so we obtain that f is differentiable.
If we want to deduce that f is twice differentiable, we can apply the same
reasoning to the equation f'(z + y) = f'(z) obtained by differentiation with
respect to z from the original. Higher order differentiability can be obtained
analogously.

In the case of Cauchy’s exponential equation f = 0 is one of the contin-
uous solutions f : R = R. If f(yo) # 0, then we can choose a neighborhood
[a,b] of yo such that f(y)/f(yo) = 1/2 for each y € [a,b]. Integrating we
obtain

b b
f(z) / f(y)dy = / F(z +y) dy,

and hence that
Jote £(w) du
fla) = "eta o

[, fy)dy
This implies that f is differentiable. Here, again, applying the same method
for the equation f'(z + y) = f’(z)f(y) obtained from the original equation
by differentiation with respect to = gives that the solutions are twice differ-
entiable, etc.

Now, let us consider a measurable solution f : R — R of Cauchy’s
equation. Let [a,b] be an interval with positive length 5. Let zo € R be
arbitrary. By Lusin’s theorem there exists a compact set C; contained in
[zo + a,z0 + b] and having Lebesgue measure greater than 37/4 such that
f|Cy is continuous. If |z — zo| < /8, then the set C; — z is contained in
C = [a —n/8,b + n/8]. Since the Lebesgue measure of C'\ (C; — z) and
C\ (Cy — o) are less than 7/2, they cannot cover C. Hence the intersection
(C1 — ) N (Cy1 — zo) is nonvoid. Now, let € > 0 be arbitrary. Since f|C:
is uniformly continuous, there exists a § > 0 such that if u,u’ € C; then
|f(u) — f(u')| < e. Hence, if |z — zo| < min{n/8,6} then for any y €
(C1 — z) N (Cy1 — zo) we obtain

|7 () = f(zo)| < |F(z+y) = Flzo+9)| +|f(v) — )| <,
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i. e., f is continuous at z. Since z, was arbitrary, f is continuous everywhere.
The same method can be applied to Cauchy’s exponential equation after
introducing the new variable t = z + y instead of z, i. e., to the equation
f@&)=ft—y)f(y)-

Note that Cauchy’s logarithmic equation f(zy) = f(z) + f(y) has no
other solution f : R — R than f = 0; this follows by substituting y = 0.

In the case of Cauchy’s power equation f(zy) = f(z)f(y) there are
solutions f : R — R which are measurable but non-continuous, continuous
but non-differentiable, etc. Indeed, the functions z + |z|° and = + |z|®sgnz
are solutions for any ¢ € R if 0° is understood as 0.

1.4. Hilbert’s fifth problem. In his celebrated address to the 1900
International Congress of Mathematicians, in his fifth problem Hilbert ([70]
p- 304) asked®

“.. how far Lie’s concept of continuous groups of transformations
is approachable in our investigations without the assumption of dif-
ferentiability of the functions”

More precisely?:

“... hence there arises the question whether, through the introduc-
tion of suitable new variables and parameters, the group can always
be transformed into one whose defining functions are differentiable

”

Explaining that the group property is connected to a system of functional
equations, in the second part of his fifth problem Hilbert goes on as follows3:

L« . inwieweit der Liesche Begriff der kontinuierlichen Transformationsgruppe auch

ohne Annahme der Differenzierbarkeit der Funktionen unserer Untersuchung zuginglich
ist.”

2« .. es ensteht mithin die Frage, ob nicht etwa durch Einfithrung geeigneter neuer
Verdndertlicher und Parameter die Gruppe stets in eine solche ubergefiihrt werden kann,
fir welche die definierenden Funktionen differenzierbar sind, ...”.

4 “ﬁberhaupt werden wir auf das weite und nicht uninteressante Feld der Funktional-
gleichungen gefiihrt, die bisher meist nur unter der Voraussetzung der Differenzierbarkeit
der auftretenden Funktionen untersucht worden sind. Insbesondere die von ABEL (Werke,
Bd. 1, 8. 1, 61, 389) mit so vielem Scharfsinn behandelten Funktionalgleichungen, die Dif-
ferenzengleichungen und andere in der Literatur vorkommende Gleichungen weisen an sich
nichts auf, was zur Forderung der Differenzierbarkeit der auftretenden Funktionen zwingt,
und bei gewissen Existenzbeweisen in der Variationsrechnung fiel mir direkt die Aufgabe
zu, aus dem Bestehen einer Differenzengleichung die Differenzierbarkeit der betrachteten
Funktionen beweisen zu miissen. In allen diesen Fillen erhebt sich daher die Frage, in-
wieweit etwa die Aussagen, die wir im Falle der Annahme differenzierbarer Funktionen
machen kénnen, unter geeigneten Modifikationen ohne diese Voraussetzung giiltig sind.”
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“Moreover, we are thus led to the wide and interesting field of func-
tional equations which have been heretofore investigated usually
only under the assumption of the differentiability of the functions
involved. In particular the functional equations treated by Abel
(Oeuvres, vol. 1, pp. 1, 61, 389) with so much ingenuity, the dif-
ference equations, and other equations occurring in the literature
of mathematics, do not directly involve anything which necessitates
the requirements of the differentiability of the accompanying func-
tions. In the search for certain existence proofs in the calculus of
variations I came directly upon the problem: To prove the differen-
tiability of the function under consideration from the existence of
a difference equation. In all these cases, then, the problem arises:
In how far are the assertions which we can make in the case of dif-
ferentiable functions true under proper modifications without this
assumption?”
(Hilbert’s emphases.) After this Hilbert quotes a result of Minkowski which
states that under certain conditions the solutions of the functional inequality

flz+y) <fl@)+fly) =yeR

are partially differentiable, and remarks that certain functional equations,
for example the system of functional equations

f(z+a) - f(z) = g(z),

where a, 8 are given real numbers, may have solutions f which are continuous
but non-differentiable, even if the given function g is analytic.

In our present-day language, it is customary to formulate the fifth prob-
lem of Hilbert as the question whether a locally Euclidean topological group
is a Lie group. However, in the second part of his fifth problem, Hilbert
draws attention to more general problems which today are called regularity
problems. They require to prove that differentiability assumptions for func-
tional equations, differential equations, and other equations can be replaced
by much weaker assumptions (possibly with appropriate modifications of the
problem). This idea returns in problems nineteen and twenty of Hilbert
concerning calculus of variation and partial differential equations. See the
book of Zeidler [209], II/A, pp. 86-93. As a general reference about Hilbert’s
problems, see the book [26] edited by Alexandrov.



