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Preface

Engineers play a significant role in the modern world. They are responsible for the design
and development of most of the products that our society uses, as well as the manufacturing
processes that make these products. Engineers are also involved in many aspects of
the management of both industrial enterprises and business or service organizations.
Fundamental training in engineering develops skills in problem formulation, analysis, and
solution that are valuable in a wide range of settings.

Solving many types of engineering problems requires an appreciation of variability
and some understanding of how to use both descriptive and analytical tools in dealing with
variability. Statistics is the branch of applied mathematics that is concerned with variability
and its impact on decision making. This is an introductory textbook for a first course in
engineering statistics. While many of the topics we present are fundamental to the use of
statistics in other disciplines, we have elected to focus on an engineering audience, because
this approach will best meet the needs of engineering students by allowing them to concen-
trate on the applications of statistics to their disciplines. Consequently, our examples and
exercises are engineering based, and in almost all cases, we have used a real problem setting
or the data either from a published source or from our own consulting experience.

Engineers in all disciplines should take at least one course in statistics. Indeed, the
Accreditation Board on Engineering and Technology is requiring that engineers learn
about statistics and how to use statistical methodology effectively as part of their formal
undergraduate training. Because of other program requirements, most engineering students
will take only one statistics course. This book has been designed to serve as a text for
the one-term statistics course for all engineering students.

ORGANIZATION OF THE BOOK

The book is based on a more comprehensive text [Montgomery, D. C. and Runger,
G. C., Applied Statistics and Probability for Engineers, John Wiley & Sons, New York,
1994] that has been used by instructors in a one- or two-semester course. We have taken
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the key topics for a one-semester course from that book as the basis of this text. As a
result of this condensation and revision, this book has a modest mathematical level.
Engineering students who have completed one semester of calculus should have no
difficulty reading nearly all of the text. Our intent is to give the student an understanding
of statistical methodology and how it may be applied in the solution of engineering
problems, not the mathematical theory of statistics.

Chapter 1 introduces the role of statistics and probability in engineering problem
solving. Statistical thinking and the associated methods are illustrated and contrasted with
other engineering modeling approaches within the context of the engineering problem-
solving method. Highlights of the value of statistical methodologies are discussed using
simple examples. Simple summary statistics are introduced.

Chapter 2 illustrates the useful information provided by simple summary and graphical
displays. Computer procedures for analyzing large data sets are given. Data analysis
methods such as histograms, stem-and-leaf plots, and frequency distributions are illustrated.
Using these displays to obtain insight into the behavior of the data or underlying system
is emphasized.

Chapter 3 introduces the concepts of a random variable and the probability distribution
that describes the behavior of that random variable. We concentrate on the normal distribu-
tion, because of its fundamental role in the statistical tools that are frequently applied in
engineering. We have tried to avoid using sophisticated mathematics and the event—sample
space orientation traditionally used to present this material to engineering students. An
in-depth understanding of probability is not necessary to understand how to use statistics
for effective engineering problem solving. Other topics in this chapter include expected
values, variances, probability plotting, correlation, and the central limit theorem.

Chapters 4 and 5 present the basic tools of statistical inference: point estimation,
confidence intervals, and hypothesis testing. Techniques for a single sample are in Chapter
4, and two-sample inference techniques are in Chapter 5. Our presentation is distinctly
applications oriented and stresses the simple comparative-experiment nature of these
procedures. We want engineering students to become interested in how these methods
can be used to solve real-world problems and to learn some aspects of the concepts behind
them so that they can see how to apply them in other settings. We give a logical, heuristic
development of the techniques, not a mathematically rigorous one.

Empirical model building is introduced in Chapter 6. Both simple and multiple
linear regression models are presented, and the use of these models as approximations to
mechanistic models is discussed. We show the student how to find the least squares
estimates of the regression coefficients, perform the standard statistical tests and confidence
intervals, and use the model residuals for assessing model adequacy. Although this chapter
makes some modest use of matrix algebra, we emphasize the use of the computer for
regression model fitting and analysis.

Chapter 7 formally introduces the design of engineering experiments, although much
of Chapters 4 and 5 was the foundation for this topic. We emphasize the factorial design
and, in particular, the case in which all the experimental factors are at two levels. Our
practical experience indicates that if engineers know how to set up a factorial experiment
with all factors at two levels, conduct the experiment properly, and correctly analyze the
resulting data, they can successfully attack a large majority of the engineering experiments
that they will encounter in the real world. Consequently, we have written this chapter to
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accomplish these objectives. We also introduce fractional factorial designs and response
surface methods.

Statistical quality control is introduced in Chapter 8. The important topic of Shewhart
control charts is emphasized. The X and R charts are presented, along with some simple
control charting techniques for individuals and attribute data. We also discuss some aspects
of estimating the capability of a process.

The students should be encouraged to work problems to master the subject matter.
The book contains an ample number of problems of different levels of difficulty. The
end-of-section exercises are intended to reinforce the concepts and techniques introduced
in that section. These exercises are more structured than the end-of-chapter supplemental
exercises, which generally require more formulation or conceptual thinking. We use the
supplemental exercises as integrating problems to reinforce mastery of concepts, as op-
posed to analytical technique. The Team Exercises challenge the student to apply chapter
methods and concepts to problems requiring data collection. As noted below, the use of
statistics software in problem solution should be an integral part of the course.

USING THE BOOK

We strongly believe that an introductory course in statistics for undergraduate engineering
students should be, first and foremost, an applied course. The primary emphasis should
be on data description, inference (confidence intervals and tests), model building, designing
engineering experiments, and statistical quality control, because these are the techniques
that they will need to know how to use as practicing engineers. There is a tendency in
teaching these courses to spend a great deal of time on probability and random variables
(and, indeed, some engineers, such as industrial and electrical engineers, do need to
know more about these subjects than students in other disciplines) and to emphasize the
mathematically oriented aspects of the subject. This can turn an engineering statistics
course into a “baby math-stat” course. This type of course can be fun to teach and much
easier on the instructor, because it is almost always easier to teach theory than application,
but it does not prepare the student for professional practice.

In our course taught at Arizona State University, students meet twice weekly, once
in a large classroom and once in a small computer laboratory. Students are responsible
for reading assignments, individual homework problems, and team projects. In-class team
activities include designing experiments, generating data, and performing analyses. The
supplemental problems and team exercises in this text are a good source for these activities.
The intent is to provide an active learning environment with challenging problems that
foster the development of skills for analysis and synthesis.

USING THE COMPUTER

In practice, engineers use computers to apply statistical methods in solving problems.
Therefore, we strongly recommend that the computer be integrated into the course.
Throughout the book, we have presented output from Minitab as typical examples of what
can be done with modern computer software. In teaching, we have used Statgraphics,
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Minitab, Excel, and several other statistics packages or spreadsheets. We did not clutter
the book with examples from many different packages, because how the instructor inte-
grates the software into the class is ultimately more important than which package is used.
All text data and the instructor manual are available in electronic form.

In our large-class meeting times, we have access to computer software. We show the
student how the technique is implemented in the software as soon as it is discussed in
class. We recommend this as a teaching format. Low-cost student versions of many
popular software packages are available, and many institutions have statistics software
available on a local area network, so access for the students is typically not a problem.

Computer software can be used to do many exercises in this text. Some exercises,
however, have small computer icons in the margin. We highly recommend using software
in these instances.

WEB SITE

Current supporting material for instructors and students is available at the Web site
www.wiley.com/college/montES. We will use this site to communicate our latest informa-
tion about innovations and recommendations for effectively using this text and we hope
to elicit your feedback. In-depth case studies that illustrate an integration of several
analysis methods will be posted as they are developed. Electronic versions of select data
from the text are posted there for your convenience.
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CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

f@x) 4

T

0.1 x
Figure 3-27  Probability for the exponential
distribution in Example 3-27.

Determine the interval of time such that the probability that no log-on occurs in the
interval is 0.90. The question asks for the length of time x such that P(X > x) = 0.90. Now,

PX>x) = e™2 = 090
Therefore, upon taking logarithms of both sides
x = 0.00421 hour = 0.25 minute
Furthermore, the mean time until the next log-on is
E(X) = 1/25 = 0.04 hour = 2.4 minutes
The standard deviation of the time until the next log-on is

oy = 1/25 hours = 2.4 minutes

In Example 3-27, the probability that there are no log-ons in a 6-minute interval is
0.082 regardless of the starting time of the interval. A Poisson process assumes that events
occur uniformly throughout the interval of observation; that is, there is no clustering of
events. If the log-ons are well modeled by a Poisson process, the probability that the first
log-on after noon occurs after 12:06 P.M. is the same as the probability that the first log-
on after 3:00 P.M. occurs after 3:06 P.M. And if someone logs on at 2:22 P.M., the
probability the next log-on occurs after 2:28 P.M. is still 0.082.

Our starting point for observing the system does not matter. However, if there are
high-use periods during the day, such as right after 8:00 A.M., followed by a period of
low use, a Poisson process is not an appropriate model for log-ons and the distribution
is not appropriate for computing probabilities. It might be reasonable to model each of
the high- and low-use periods by a separate Poisson process, employing a larger value
for \ during the high-use periods and a smaller value otherwise. Then, an exponential
distribution with the corresponding value of A can be used to calculate log-on probabilities
for the high- and low-use periods.

An even more interesting property of an exponential random variable is the lack of
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memory property. In Example 3-27, suppose that there are no log-ons from 12:00 to
12:15; the probability that there are no log-ons from 12:15 to 12:21 is still 0.082. Because
we have already been waiting for 15 minutes, we feel that we are “due.” That is, the
probability of a log-on in the next 6 minutes should be greater than 0.082. However, for
an exponential distribution this is not true.

The lack of memory property is not that surprising when you consider the development
of a Poisson process. In that development, we assumed that an interval could be partitioned
into small intervals that were independent. These subintervals are similar to independent,
Bernoulli trials that comprise a binomial process; knowledge of previous results does not
affect the probabilities of events in future subintervals.

The exponential distribution is often used in reliability studies as the model for the
time until failure of a device. For example, the lifetime of a semiconductor chip might
be modeled as an exponential random variable with a mean of 40,000 hours. The lack of
memory property of the exponential distribution implies that the device does not wear
out. That is, regardless of how long the device has been operating, the probability of a
failure in the next 1000 hours is the same as the probability of a failure in the first 1000
hours of operation. The lifetime of a device with failures caused by random shocks might
be appropriately modeled as an exponential random variable. However, the lifetime of a
device that suffers slow mechanical wear, such as bearing wear, is better modeled by a
distribution that does not lack memory.

EXERCISES FOR SECTION 3-9.2

3-88. Suppose X has an exponential distribu- (b) What s the probability that the first
tion with A\ = 2. Determine the fol- count occurs in less than 10
lowing. seconds?

(a) PX=0) (c) What s the probability that the first

(b) P(X = 2) count occurs between 1 and 2 min-

©) PX=1) utes after start-up?

dPI<X<2 3-91. Continuation of Exercise 3-90.

(e) Find the value of x such that (a) What is the mean time between
P(X < x) = 0.05. counts?

3-89. Suppose X has an exponential distribu- (b) What is the standard deviation of
tion with mean equal to 10. Determine the time between counts?
the following. (c) Determine x, such that the proba-
(a) P(X > 10) bility that at least one count occurs
(b) P(X > 20) before time x minutes is 0.95.

(c) P(X > 30) @ The time between calls to a plumbing

(d) Find the value of x such that supply business is exponentially dis-
PX <x) = 0.95. tributed with a mean time between

-90. Suppose the counts recorded by a gei- calls of 15 minutes.

ger counter follow a Poisson process (a) What is the probability that there

with an average of two counts per are no calls within a 30-minute in-

minute. terval?

(a) What is the probability that there (b) What is the probability that at least
are no counts in a 30-second in- one call arrives within a 10-min-

terval? ute interval?
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3-93.

3-94.

3-95.

(c) Whatis the probability that the first
call arrives within 5 and 10 min-
utes after opening?

(d) Determine the length of an interval
of time such that the probability
of at least one call in the interval
is 0.90.

The time between arrivals of taxis at

a busy intersection is exponentially

distributed with a mean of 10 minutes.

(a) What is the probability that you
wait longer than one hour for a
taxi?

(b) Suppose you have already been
waiting for one hour for a taxi,
what is the probability that one ar-
rives within the next 10 minutes?

Continuation of Exercise 3-93.

(a) Determine x such that the probabil-
ity that you wait more than x min-
utes is 0.10.

(b) Determine x such that the probabil-
ity that you wait less than x minutes
is 0.90.

(c) Determine x such that the probabil-
ity that you wait less than x minutes
is 0.50.

The distance between major cracks in

a highway follows an exponential dis-

tribution with a mean of 5 miles.

(a) What is the probability that there
are no major cracks in a 10-mile
stretch of the highway?

(b) What is the probability that there
are two major cracks in a 10-mile
stretch of the highway?

(c) What is the standard deviation of
the distance between major
cracks?

Continuation of Exercise 3-95.

(a) Whatis the probability that the first
major crack occurs between 12 and
15 miles of the start of inspection?

(b) What is the probability that there
are no major cracks in two separate
5-mile stretches of the highway?

(c) Given that there are no cracks in
the first 5 miles inspected, what is

3-97.

3-98.

3-99.

3-100.

the probability that there are no
major cracks in the next 10 miles
inspected?

The time between the arrival of elec-

tronic messages at your computer is

exponentially distributed with a mean
of two hours.

(a) What is the probability that you
do not receive a message during a
two-hour period?

(b) If you have not had a message in
the last four hours, what is the
probability that you do not receive
a message in the next two hours?

(c) What is the expected time between
your fifth and sixth message?

The time between arrivals of small air-
craft at a county airport is exponen-
tially distributed with a mean of one
hour. What is the probability that more
than three aircraft arrive within an
hour?

Continuation of Exercise 3-98.

(a) If 30 separate one-hour intervals
are chosen, what is the probability
that no interval contains more than
three arrivals?

(b) Determine the length of an interval
of time (in hours) such that the
probability that no arrivals occur
during the interval is 0.10.

The time between calls to a corporate

office is exponentially distributed with

a mean of 10 minutes.

(a) What is the probability that there
are more than three calls in one-
half hour?

(b) What is the probability that there
are no calls within one-half hour?

(c) Determine x such that the probabil-
ity that there are no calls within x
hours is 0.01.

(d) What is the probability that there
are no calls within a two-hour in-
terval?

(e) If four nonoverlapping one-half
hour intervals are selected, what is
the probability that none of these
intervals contains any call?
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3-10 NORMAL APPROXIMATION TO THE BINOMIAL
AND POISSON DISTRIBUTIONS

Because a binomial random variable is a count from repeated independent trials, the
central limit theorem can be applied. Consequently, it should not be surprising to use the
normal distribution to approximate binomial probabilities for cases in which » is large.
The following example illustrates that for many physical systems the binomial model is
appropriate with an extremely large value for n. In these cases, it is difficult to calculate
probabilities by using the binomial distribution. Fortunately, the normal approximation
is most effective in these cases. An illustration is provided in Fig. 3-28.

EXAMPLE 3-28

In a digital communication channel, assume that the number of bits received in error can
be modeled by a binomial random variable, and assume that the probability that a bit is
received in error is 1 X 107>, If 16 million bits are transmitted, what is the probability
that more than 150 errors occur?

Let the random variable X denote the number of errors. Then X is a binomial random

variable and
P(X>150) =1 — P(X = 150)
150
=1 — z <16’000’000> (10—5)X(1 _ ]0—5)16.000,000—x
x=0 x
e
' n=10 {
R B
o.zoé H s |
0.15
)
\ ¥
0.10| :
|
0.05 y \ |
0.00 o~ .

Figure 3-28 Normal approximation to the binomial distri-
bution.
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Clearly, the probability in Example 3-28 is difficult to compute. Fortunately, the
normal distribution can be used to provide an excellent approximation in this example.

If X is a binomial random variable, then

KRR
Vnp (1—-p)

is approximately a standard normal random variable.

(3-14)

Recall that for a binomial variable X, E(X) = np and V(X) = np(1 — p). Consequently,
the normal approximation is nothing more than the formula for standardizing the random
variable X. Probabilities involving X can be approximated by using a standard normal
random variable. The normal approximation to the binomial distribution is good if n is
large enough relative to p; in particular, whenever np > 5 and n(1 — p) > 5. The digital
communication problem in Example 3-27 is solved as follows

P(X>150)=P< X — 160 __ 150 — 160 )

V160(1 — 1073  V160(1 — 1075)
= P(Z> —0.79) = P(Z< 0.79) = 0.785
EXAMPLE 3-29

Again consider the transmission of bits in Example 3-28. To judge how well the normal
approximation works, assume only n = 50 bits are to be transmitted and that the probability
of an error is p = 0.1. The exact probability that 2 or less errors occur is

PX=2) = (5(?>0.95° + (51()) 0.1(0.9%) + <520>0.12(0.948)

= 0.11

Based on the normal approximation

X—5 _2—38

=2)=Pl=—=—<=—=
HESS P( 212 2.1%

) = P(Z< —1415) = 0.08

For a sample as small as 50 bits, the normal approximation is reasonable.




