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1

Introduction

As IT systems have evolved, the amount of information financial
services organizations maintain about individuals and the speed at
which they can process information has increased dramatically. One
consequence of this development is a paradigm shift in the way organ-
izations manage their relationships with consumers. At one time, when
dealing with large populations, standard practice was to segment people
into relatively few homogenous groups, and then apply an identical
relationship management strategy to everyone in each group. Take the
case of a provider of home insurance wanting to launch a promotional
campaign to recruit new customers. The marketing department may
have decided, somewhat arbitrarily, that its target audience were white
collar families with children. Its promotional strategy would be to send
identical mail shots to all households in middle class suburbs where it
was believed the majority of its target audience resided. Some mailings
would be received by the intended audience, but many would be
wasted because they would be sent to singles, the unemployed or those
on low incomes who just happened to live in middle class suburbs.
Similarly, white collar families living in inner cities or rural commun-
ities represented a missed opportunity because they lived outside the
target areas.

At the other end of the spectrum, where customer relationships needed
to be managed on a case by case basis, deciding how to deal with some-
one was a laborious, time consuming and expensive process. A classic
example is when someone wanted a loan from their bank. The process
would begin with them making an appointment to see the manager of
their local branch, and they may have had to wait several weeks before an
appointment was available. The customer would arrive at the meeting in
their best clothes, in order to make a good impression, and the bank

1



2 Credit Scoring, Response Modelling and Insurance Rating

manager would question them about their personal and financial cir-
cumstances in order to form an opinion about their creditworthiness.
If the bank manager felt they were likely to repay what they borrowed
and represented a good investment, then they would be granted a loan.
However, if the bank manager didn’t want to grant the loan then they
were under no obligation to do so. Many people had their loan requests
declined due to their gender, because they belonged to a minority group,
or simply because the bank manager was in a bad mood and didn’t fancy
granting any loans that day. Even if the loan was granted, the time taken
between the initial enquiry and receipt of funds could be considerable.

Within the financial services industry today, most decisions about how
to deal with people are taken automatically by computerized decision
making systems. These assess each person on a case by case basis
using geo-demographic information that is known about them. Human
involvement in such decisions is very much the exception rather than
the rule. At the heart of these decision making systems lie mathematically
derived forecasting models that use information about people and their
past behaviour to predict how they are likely to behave in future. Deci-
sions about how to treat people are made on the basis of the predictions
generated by the forecasting model(s). These days, the insurer would use a
response model to predict the likelihood of someone on their mailing list
responding to a promotional mail shot. If the model predicted that the
person was likely to respond by requesting an insurance quotation, then
they would automatically be mailed with an individually tailored com-
munication - regardless of where they lived or which socio-economic
group they belonged to. Likewise, a loan provider will use a credit scoring
model (a model of creditworthiness) to predict how likely an applicant is
to repay the loan they are applying for. Loans will only be offered to
those the model predicts are creditworthy and likely to make a positive
contribution towards profits. Those that the credit scoring model predicts
are uncreditworthy will be declined.

The application of automated decision making systems brings many
benefits. One is that they make better decisions, more quickly and more
cheaply than their human counterparts. This allows decisions to be
made in real time while the customer is in store, on the phone or on
the internet. A second benefit is they allow tailored decisions to be
made, based on an individual’s propensity to behave in a certain way,
instead of vague estimates about the general behaviour of large popu-
lations. Another advantage is that they are consistent in their decision
making. Given the same information twice, they will always arrive at
the same decision. This is something that cannot be guaranteed with
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human decision makers. Developed correctly, these systems also display
no unfair bias in terms of gender, race or any other characteristic deemed
undesirable by society. Automated decision making systems also facilitate
centralized decision making. This means that changes to an organ-
ization’s strategy for dealing with customers can be made quickly and
easily at the site where the decision making system is controlled. This
removes the need to coordinate changes in decision strategy across many
different branches/offices/regions.

Not surprisingly, the value of automated decision making systems
to the organizations that employ them is substantial. A large financial
services organization will make billions of dollars worth of decisions
each year, based solely on predictions made by their forecasting
models. There is therefore, considerable effort expended to ensure that
the forecasting models an organization employs perform in an optimal
capacity.

1.1 Scope and content

The goal of this book is to convey an understanding of how forecasting
models of consumer behaviour are developed and deployed by major
financial services organizations such as banks, building societies (saving
and loan companies) and insurers. However, before going any further,
I want to make two things clear. First, this is a book about the develop-
ment and application of forecasting models of consumer behaviour
within business environments. It is not a book about forecasting tech-
niques. What's the difference? In the classroom it’s not unusual to
spend 80-90 percent of the time learning about the mathematical/
statistical processes underpinning methods such as logistic regression
and discriminant analysis that are used to construct models of con-
sumer behaviour. Rarely is more than 10-20 percent of teaching time
(and sometimes none at all) spent discussing wider issues that drive
model development and usage in real world environments. Within the
commercial sector the opposite is true. On average, well over 80 percent
of the effort involved in the successful delivery of a modelling project
is concerned with business issues. This includes spending time doing
things such as: drawing up a project plan to determine how long the
project will take and what resources are required, working out how
much the project will cost, deciding what behaviour the model should
predict, agreeing where the data to construct the model will come from,
complying with audit and legal requirements, producing document-
ation, deploying the model within the business and determining how
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the performance of the model, once deployed, will be monitored to
ensure it continues to work as intended. Only a few percent of a project’s
resources will actually be spent working with the statistical techniques
that are used to construct the model. A typical bank, for example, will
take anywhere between four and 12 months to develop and implement a
new suite of credit scoring models to estimate the creditworthiness of
people applying for a product such as a credit card. Yet, no more than a
few days or weeks will be required for the modelling part.

The second point I want to make is that this is a book about practice.
It is not a theoretical text, nor is the intention to provide a compre-
hensive literature review of the subject. References are made to theory
and relevant academic material, but the primary objective is to explain,
in simple terms, the steps required to deliver usable, high quality fore-
casting models within realistic timeframes, based on my personal expe-
rience of working in this area of financial services. There are very many
complex data analysis/modelling/forecasting techniques and practices
(and more are being developed all the time), that in some situations
may achieve marginally better results than the methods discussed here,
or which are more appropriate from a theoretical perspective. However,
the effort required to develop, implement and maintain such solutions
means that in practice few organizations employ them - the cost/
benefit case just doesn’t add up. Where such methods are employed
the justification for doing so is often questionable. In some cases
the decision to use a given modelling technique is driven by political
pressures, originating from people who want to say that they and the
organization that employs them are working at the cutting edge, not
because there is a good business case for doing so. I have also come
across many examples where one method of model construction
appears to work much better than another, but on closer inspection
the difference is found to be due to errors in the way models have
been constructed and/or poor methodology when validating results.
When the errors are corrected the differences, more often than not,
disappear or are so small as to have no practical significance. Remember
— Occam'’s razor applies — all other things being equal, simple solutions
are best.

Given the aforementioned points, there are two groups I have written
this book for. The first are those who are not model builders themselves,
but who would like to know more about how models of consumer behav-
iour are constructed and used. Perhaps you work with model builders, or
manage them, and feel you should understand more about what they do.
For this audience 1 would like to emphasize that a degree in statistics or
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mathematics is not a requirement for understanding the material in this
book. There are some formulas and equations, but the maths is kept to
a minimum, and where it appears 1 have attempted to explain it in
simple terms without assuming that the reader has much prior know-
ledge. If you can get through this introductory chapter, then you
should not have any trouble with any material in subsequent chapters.
The second group are those with a more technical background who
may be, or about to be, involved in model construction, but who have
little practical experience of how models are constructed within busi-
ness environments. Maybe you are a graduate working in your first job
or an experienced academic who wants to know more about the develop-
ment and application of models within the financial services sector.
For readers in this group, 1 don’t claim to offer much that is new in
terms of theory, but I do hope to provide some useful guidance about
the practical aspects of model development and usage.

With regard to the structure of the book, in the remainder of this
chapter the idea of a forecasting model is introduced, which going for-
ward I shall simply refer to as “a model”. This covers the type of behav-
iour that models are used to predict, the different forms of model that
can be developed and the main stages that comprise a typical model-
ling project. Chapters 2 through 8 look at the key processes involved in
developing a model, starting with project planning, then moving on to
consider sampling, preparing data, data analysis, data pre-processing and
modelling. Chapter 9 looks at the problem of sample bias. Sample bias is
when behavioural information is missing for some cases, due to previous
decisions made about them. This can lead to sub-optimal (biased) models,
unless appropriate corrective action is taken. Chapter 10 discusses imple-
mentation and how models are monitored, post implementation, to
see how well they are performing. The final chapter discusses a num-
ber of topics, in particular, small sample validation methodologies and
multi-model ‘fusion’ systems, which generate a forecast of behaviour by
combining several different forecasts together.

1.2 Model applications

There are many different behaviours that financial services organizations
are interested in forecasting. Table 1.1 summarizes the most common
behaviours that models are used to predict.

I do not claim that Table 1.1 provides an exhaustive list of every type
of model used within the financial services industry, but it probably
covers over 95 percent of the models in use today.
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Table 1.1 Model applications

Model

Behaviour the model predicts

Classification models
Response

Conversion

Creditworthiness
(Credit scoring/
Probability of default)

Fraud

Attrition (Retention/
Churn)

Revolver

Recovery
(Collections)

Insurance risk

Regression models

Response time

Affordability

Revenue

The likelihood someone responds to direct
marketing activity such as a mail shot. Marketing
activity is only targeted at people the model
predicts have a high likelihood of responding.

The likelihood someone becomes a customer. For
example, the likelihood that someone who
responded to a mail shot by asking for an
insurance quote, subsequently accepts the quote
they are given.

The likelihood someone will repay money that
they owe. Models of this type are used to decide
whether to offer credit in the form of personal
loans, credit cards, mortgages and motor finance.

The likelihood a credit application or an insurance
claim is fraudulent. Fraud models are also widely
used to predict if a credit card transaction is
fraudulent.

The likelihood that a customer defects to a rival or
fails to renew a relationship.

The likelihood a credit card customer revolves the
balance (does not pay the balance in full) on their
account each statement period.

The likelihood someone pays the arrears owing on
a credit agreement when they have already missed
one or more scheduled repayments.

The likelihood someone will make a claim against
their insurance policy.

The time it takes someone to respond to a
marketing communication.

Someone’s disposable income after bills, rent,
mortgage and so on have been taken into account.
This type of model is used to check that people
who are applying for a new line of credit have
sufficient income to be able to meet their
Tepayments.

The income generated from a customer over a
given time horizon.
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Table 1.1 Model applications - continued

Model Behaviour the model predicts
Customer lifetime The financial contribution a customer makes over
value the lifetime of the relationship.
Exposure at default The amount someone owes when they default on

a credit agreement. For a product such as a credit
card, this takes into account any further advances
that are made prior to default occurring.

Loss given default The loss incurred from a customer who defaults on
a credit agreement, taking into account the
exposure at the time of default and any recoveries
that are made after default has occurred.

Loss given claim The loss incurred from a customer who makes a
claim against their insurance policy.

You will note from Table 1.1 that the models have been segmented
into two types: classification models and regression models. Class-
ification models are used to predict how likely a customer behaviour
is to occur. A response model, for example, predicts how likely some-
one who is targeted with a marketing communication, encouraging
them to buy a product or service, will respond to it. A credit scoring
model predicts whether or not someone will make their loan repay-
ments, and a fraud model predicts the likelihood that someone acts
fraudulently. In each case the output generated by the model - the
model score — can be interpreted as a probability that someone will or
will not exhibit the behaviour in question.

Regression models are used to predict quantities; that is, the mag-
nitude of something. Typically, this will be a financial measure such as
how much the customer is likely to spend (a revenue model), how
much you expect to make from a customer over the lifetime of the
relationship you have with them (a customer lifetime value model) or
the loss you can expect to incur when someone defaults on a credit
agreement (a loss given default model).

With regard to the split between classification and regression, the
most popular usage is classification. Credit scoring models were the
first classification models to be widely used in a commercial setting,
with their origins dating back to the 1940s (Durand 1941; Wonderlic
1952). As better technology became available, so there was a corres-
ponding growth in the application of classification and regression



