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Preface

The reader, confronted with the preface of yet another textbook on dynamics, might
well be forgiven for asking: is such an addition to the already extensive range of texts
on this subject really necessary? In our opinion, the answer is yes.

Our experience, gained over many years teaching both undergraduate and
postgraduate courses in applied mechanics, has indicated the importance of conveying
to students not only the fundamental concepts governing the motion of particles or
bodies, but the way in which these fundamentals are associated with practical systems,
which at first appear to bear no relationship to any of the theory that has been
imparted. Many contemporary textbooks fail to make the successful transition
between theory and practice, oversimplifying either or both of these elements and
leaving the student stranded somewhere between.

The aim of this book is to help students bridge the gap between theoretical
knowledge and practical application, thereby enabling them to approach specific
problems with confidence.

Central to this theme is the relationship between rectilinear and rotational systems.
Students may understand the basic principles of dynamics when dealing with purely
rectilinear systems, but may have difficulty in relating these principles to rotating
systems; this difficulty is compounded many times over when the system being analysed
possesses both rectilinear and rotational components of motion. In an attempt to
overcome these problems, Chapter 1 formulates the concept of dynamically equivalent
systems, the use of which enables even the most complex of systems to be represented
by a much simpler model—provided certain important criteria are met. The usefulness
of this concept is demonstrated in Chapter 2 in the study of the transmission of
power through geared systems. In this chapter, also, the reader is introduced to an
innovative vector system for the analysis of epicyclic gear transmission.

The transmission of motion by coplanar link mechanisms is investigated in Chapter
3, which also highlights the importance of the simple reciprocating mechanism in
relation to the force analysis of bearings and sliding components, and acts as a
precursor to the analysis of more complex multicylinder engines in a later chapter.

Chapter 4 builds upon the knowledge imparted in Chapter 3 by demonstrating
the effect of intermittent energy transfer in a reciprocating system, and highlights the
need for the use of flywheels to act as energy reservoirs in such systems. Attention
is also devoted to the general design of flywheels.

Further work on the transmission of power is studied in depth in Chapter 5 where
the friction drive, in the form of belts and clutches, is the means of motion and energy
transfer. In addition, the manner of energy dissipation, using frictional brake systems,
is rigorously examined.
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In Chapters 6 and 7 the problems associated with rotational out-of-balance are
investigated. This subject is, perhaps, one of the most important aspects of dynamics
likely to confront the practising engineer, since in both rotational and reciprocating
machines it can often be the major source of vibration. In Chapter 6 a detailed
description of the experimental method for determining out-of-balance forces in
rotating systems is presented. In Chapter 7 the out-of-balance frame forces and
moments associated with a range of positive displacement engines are investigated
and recommendations for minimizing these are suggested.

As a natural extension to the work covered in Chapter 3, Chapter 8 expands
general plane motion analysis to cover bodies undergoing general space motion, with
obvious application to aerospace problems and the kinematic analysis of three-
dimensional robotic motion; in addition, examination is made of the related topic of
gyrodynamics.

The last five chapters of the book are concerned with vibration theory and the
residual effects of this undesirable phenomenon. To some readers this may appear
to be a somewhat excessive concentration on this topic; however, in our opinion the
extensive coverage of vibration merely reflects the importance of this subject within
a whole range of engineering disciplines, particularly in relation to power generation
and transmission systems. Vibration theory is introduced at an elementary level in
Chapter 9 with an analysis of a single degree of freedom, mass/elastic system
performing rectilinear and angular oscillating motions. Once again extensive use is
made of the technique of dynamic equivalence in creating simplified mathematical
models. The effects of damping, harmonic forcing, transmissibility and seismic
excitation are also assessed.

In Chapter 10, systems possessing two degrees of freedom are considered in the
absence of damping and external force, but with the added complication of gearing.

The complexity of the system is increased in Chapter 11 with the introduction of
multi degree of freedom systems which relate more closely to the practical vibration
problems experienced in structural design. Using a simple two degree of freedom
system purely as a vehicle, the student is introduced to some of the principles of
matrix analysis of such systems. A central theme of this chapter is modal analysis.

In Chapter 12 vibration analysis is extended to cover distributed mass/stiffness
systems as opposed to lumped systems. Commencing with the simplest of all
distributed systems, namely the stretched wire, analysis proceeds through extensional
and torsional vibration of prismatic bars. The lateral vibration of uniform beams is
examined together with the effect that rotational motion has on the vibratory response
of such components. In addition to the classical analysis, consideration is also given
to approximate methods of solution, particularly those that are energy based.

Chapters 9-12 are concerned essentially with the analysis and prediction of the
vibrating response of mass/elastic systems, whether such systems are single or multi
degree of freedom in nature or are modelled in terms of lumped or distributed
parameters. The aim of the practising engineer (and this is consequently of importance
to postgraduates and undergraduates as potential engineers) is to reduce, or if possible
eliminate completely, the effects of vibration. Chapter 13 is devoted to highlighting
some of the ways in which this may be achieved, both by passive system analysis
and also in relation to more recently developed active control technology. It is not
intended to be an in-depth analysis of the subject but rather an attempt to draw to
the reader’s attention the range of options open to the engineer in the field of vibratory
control.
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1
Introduction

1.1 Historical review

Dynamics can be defined as that branch of science dealing with the study of the
motion of systems under the action of forces, and thus it contrasts with statics which
is concerned with stationary systems under the action of forces. Dynamics can be
divided into two main branches, namely dynamics of solids and dynamics of fluids.
Under the action of shearing forces, however, fluids react differently from solids in
that they continue to deform as long as the shear forces are applied. For that reason,
solid dynamics and fluid dynamics are normally treated separately. In this text we
shall concern ourselves with dynamics of solids and, in particular, some of its
applications to modern systems.

As in all subjects, although we are mainly concerned with their application, it is
of interest to learn something of the history and the people involved in the development
of the subject.

The foundations of dynamics may be said to have been laid down by Descartes,
Kepler and Galileo. René Descartes (1596-1650), a French philosopher and mathe-
matician, widely regarded as the founder of modern philosophy, introduced analytical
geometry—hence the term ‘cartesian coordinate system’ with which the reader will
be familiar. Johan Kepler (1571-1630), a German astronomer, discovered the three
basic laws of planetary motion which were published between 1609 and 1619. Galileo
Galilei (1564—-1642), an Italian mathematician, astronomer and physicist, discovered
the uniform period of the pendulum and demonstrated that different bodies of different
weight descended at the same rate. Galileo’s studies were, however, seriously hindered
as a consequence of his theories contradicting those of Aristotle, therefore leading
him into continual conflict with the ecclesiastical Inquisition.

On the basis of the work of these three men, Sir Isaac Newton (1642-1727), an
English mathematician, astronomer and physicist, formulated his three Laws (or
Axioms) of Motion. Newton related the force that acts on a particle to the momentum
change it produced, and both these quantities are vectors. Newton essentially derived
his three Laws of Motion so that each Law pertained to the three mutually
perpendicular directions in space. These laws form the basis of vectorial mechanics.
He acknowledged the impact of the earlier work of Descartes, Kepler and Galileo,
when he stated: ‘If I have seen a little farther than others it is because I have stood
on the shoulders of giants’.

About the same time as Newton was working on his Laws of Motion, a German
mathematician, Baron Gottfried Wilhelm von Leibniz (1646—-1716) was working in
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this same field, albeit under quite a different approach. Leibniz related the vis viva
to ‘the work of the force’, whereby vis viva is twice the kinetic energy and ‘the work
of the force’ is called at the present time the ‘work function’. In many cases, the work
function is simply the potential energy. Later, however, Joseph Louis Lagrange
(1736-1813), a French mathematician, and then Sir William Rowan Hamilton
(1805-1865), an Irish mathematician, developed analytical dynamics by regarding
Leibniz’s ideas as the basis of a principle.

In the twentieth century, Albert Einstein (1879-1955), an American physicist, drew
attention to the failure of Newtonian mechanics in extreme situations, namely when
speeds close to those of light are involved or for events on a molecular scale: however.
Hamiltonian dynamics, when suitably interpreted, can cope with these extreme
situations and quantum mechanics, which is by and large attributed to Einstein, also
has its foundations in Hamiltonian mechanics. In addition it is interesting to note
that the design of modern semiconductors (silicon chips) is, to a large extent, based
on the theories of Sir William Rowan Hamilton and Robert Brown (1773-1852), a
Scottish botanist whose work on the bombardment of particles by molecules has
given rise to the term ‘Brownian movement'.

Mechanical engineers are not, in general, concerned with the extreme situations
of quantum mechanics, and therefore Newtonian mechanics is more than adequate.
Attention will consequently be confined to vectorial or Newtonian dynamics and its
application to the design and analysis of mechanisms, vehicles, machines, etc.

1.2 Newton’s three Laws of Motion

Because of their importance, we shall quote the original Latin form of the three Laws
of Motion as set down by Newton in the first edition of his Principia in 1687.

Lex 1 Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in
directum, nisi quatenus a viribus impressis cogitur statum illum mutare.

Lex I  Mutationem motus proportionalem esse vi motrici impressae, et fieri
secundum lineam rectam qua vis illa imprimitur.

Lex Il Actioni contrariam semper et aequalem esse reactionem: sive corporum
duorum actiones in se mutuo semper esse aequales et in partes contrarias
dirigi.

In 1729 Andrew Motte translated the Principia into English; in 1934 F. Cajori,

University of California Press, revised this translation, whereby (allowing for errors

in the translation from Latin) Newton’s three Laws of Motion are:

Law 1 Every body continues in a state of rest, or of uniform motion in a straight line,
unless it is compelled to change that state by forces impressed upon it.

Law 2 The change in motion is proportional to the motive force impressed; and it is
made in the direction of the straight line in which the force is impressed.

Law 3 To every action there is always opposed an equal reaction; or, the mutual
action of two bodies upon each other are always equal, and directed to
contrary parts.

The Second Law forms the basis of most analysis of dynamic systems and is usually
presented in the more recognizable form:

F=Ma
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where F is the resultant force vector, a is the resultant acceleration vector measured
in a non-accelerating frame of reference, and M is the mass of the body. Sometimes
the Second Law is expressed as the resultant force being equal to the time rate change
of momentum with its change in the direction of the force. Both formulations are,
however, equally correct when applied to bodies of constant mass. Although, strictly
speaking, this law refers to particle motion, it can also be directly applied to rigid
bodies (a system of particles bounded by a closed surface that cannot deform) in
cases where the motion is purely rectilinear, i.e. where all particles contained within
the body move in parallel straight lines. However, it can also be shown to be directly
applicable to rotating solid bodies in the form

T=Ila

where T is the resultant torque vector acting on the body about a point fixed in
inertial space, a is the angular acceleration vector of the body about the same point,
and I is the mass moment of inertia of the body about the point—often referred to
as the polar mass moment of inertia.

The First Law is a consequence of the Second Law, since there can be no acceleration
when the resultant force is zero and therefore the body will either remain at rest or
continue to move with constant velocity.

The Third Law defines the rules regarding action and reaction between connected
bodies and as such sets out the guidelines for the construction of ‘free body diagrams’
to which the Second Law is then applied. By means of a practical example, let us
now demonstrate how the Second and Third Laws are applied.

1.2.1 Basic vehicle dynamics problem

Consider the case of a rear wheel drive automobile as shown in Figure 1.1 where the
applied torque of magnitude T, at the rear wheels is the driving torque produced by
the engine, and F, is the magnitude of the applied aerodynamic drag force acting on
the vehicle. We shall assume at this stage that any energy losses from the system,
due to heat dissipation, are negligible.

Figure 1.2 shows the free body diagrams of the car body, wheels and road, neglecting
any frictional torque at the wheel bearings and any rolling resistance forces (forces
at the wheels due to air pressure variations within the tyres).

By inspecting the directions of the forces and torques on each of the free body
diagrams, the reader will note that the values and directions of the actions and reactions

Motion

Figure 1.1
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are in compliance with the Third Law. Consider now the car body, of mass M, and
centre of mass at the point G, and let us assume that the only motion is the forward

rectilinear motion and that the drag force can be taken to act at G. Therefore, from
the First and Second Laws, we have

T+ Fl—-Mg=0 (vertical equilibrium)
d\Fy,—d,Fy—d Fy+d,Fi—Ty=0  (angular equilibrium)

Fr—F —F,=M, d—i (horizontal rectilinear motion) (1.1)

where v is the forward speed of the car body and duv/dt represents the acceleration.
Similarly, for the rectilinear motion of the wheels, we have

—Mg+F —F,=0 and —~Mg+F'—FL=0
d

H—H=M1$ (1.2)
dv

Fi—F{=M; (1.3)
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where M, and M, are the mass of the rear and front wheels respectively. Now, for
the rotational motion of the wheels,

T, F'—Id d
Q r =1, dt
dQ
"2F|r=1f—dtf

where I, and I; are the polar mass moments of inertia of the rear and front wheels
respectively about their axes of rotation. If at this stage we make the important
assumption that no slip occurs at the interface between the wheels and the road, i.e.
Q, =v/r, and Q; =v/r,, then these two latter equations can be rearranged to give

de

To/ry —F{=I,/rfa (1.4)
and
, dv
F=[[r2 a (1.5)

Summing equations 1.1, 1.2 and 1.3, we have
dv
F:-F{—Fdz(Mb+M,+M,)dit (1.6)

and if we now make the substitution
dv ds dv dv
dr drds 'ds
where s is the instantaneous rectilinear displacement of the vehicle, then equation 1.6
can be rewritten as

(1.7)

j(F{—F{—Fd)ds:J(Mb+M,+Mf)vdl‘ (1.8)

The left-hand side of equation 1.8 represents the work done by the net resultant
force acting on the vehicle, whilst the right-hand side represents the resulting change
in kinetic energy associated with the rectilinear motion of the vehicle. If we now sum
equations 1.4 and 1.5 and make the substitution described by equation 1.7, then

~[(TQ/rl—F{+Ff)ds:J‘(l,/rf+1f/r%)vdv (1.9)
that is, the work done by the net resultant torque acting on the wheels is equal to
the change in kinetic energy associated with the rotational motion of the wheels.

Equations 1.8 and 1.9 illustrate what is often referred to as the Principle of Work

and Kinetic Energy, the former as applied to the rectilinear motion only and the latter
to the rotational motion only. If we now sum equations 1.8 and 1.9 we have

J(To/rl —Fyds= f(Mb + M, + M+ 1,/r} + 1 /r3)vdo (1.10)

Equation 1.10 can be considered as the equation describing the rectilinear motion



