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PREFACE

Reliable model-based prognoses of the initiation and propagation of
cracks in concrete plays an important role for the durability and in-
tegrity assessment of concrete and reinforced concrete structures. To
this end, a large number of material models for concrete cracking
based on different theories (e.g., damage mechanics, fracture mechan-
ics, plasticity theory and combinations of the mentioned theories) as
well as advanced finite element methods suitable for the representation
of cracks (e.g., the Extended Finite Element Method and Embedded
Crack Models) have been developed in recent years.

The focus of the Advanced School on ” Numerical Modeling of Con-
crete Cracking” at the International Centre for Mechanical Sciences
(CISM) at Udine in May 2009 was laid on numerical models for de-
seribing crack propagation in concrete and their applications to nu-
mertcal simulations of concrete and reinforced concrete structures.
The lectures of this course formed the basis for this book. Its aim
is to impart fundamental knowledge of the underlying theories of the
different approaches for modelling cracking of concrete and to provide
a critical survey of the state-of-the-art in computational concrete me-
chanics.

This book covers a relatively broad spectrum of topics related to
modelling of cracks, including continuum-based and discrete crack
models, meso-scale models, advanced discretization strategies to cap-
ture evolving cracks based on the concept of finite elements with em-
bedded discontinuities and on the extended finite element method, re-
spectively, and, last but not least, extensions to coupled problems such
as hygro-mechanical problems as required in computational durability
analyses of concrete structures.

Innsbruck and Bochum,

March 2011,
Giinter Hofstetter Griinther Meschke
University of Innsbruck Ruhr-University Bochum,

Austria Germany
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Damage and Smeared Crack Models

Milan Jirdsek

Czech Technical University in Prague, Czech Republic

1 Isotropic Damage Models

Continuum damage mechanics is a constitutive theory that describes the progres-
sive loss of material integrity due to the propagation and coalescence of micro-
cracks, microvoids, and similar defects. These changes in the microstructure lead
to a degradation of material stiffness observed on the macroscale. The term “con-
tinuum damage mechanics™ was first used by Hult in 1972 but the concept of
damage had been introduced by Kachanov already in 1958 in the context of creep
rupture (Kachanov, 1958) and further developed by Rabotnov (1968); Hayhurst
(1972); Leckie and Hayhurst (1974). The simplest version of the isotropic dam-
age model considers the damaged stiffness tensor as a scalar multiple of the initial
elastic stiffness tensor, i.e., damage is characterized by a single scalar variable. A
general isotropic damage model should deal with two scalar variables correspond-
ing to two independent elastic constants of standard isotropic elasticity. More
refined theories take into account the anisotropic character of damage: they repre-
sent damage by a family of vectors (Krajcinovic and Fonseka, 1981), by a second-
order tensor (Vakulenko and Kachanov, 1971) or, in the most general case, by a
fourth-order tensor (Chaboche, 1979). Anisotropic formulations can be based on
the principle of strain equivalence (Lemaitre, 1971), or on the principle of energy
equivalence (Cordebois and Sidoroff, 1979) (the principle of stress equivalence is
also conceptually possible but is rarely used).

In the present chapter, we will focus on isotropic damage models and on smeared
crack models, which incorporate anisotropy in a simplified way. Anisotropic
damage models based on tensorial description of damage will are treated e.g. in
Lemaitre and Desmorat (2005).

1.1 One-Dimensional Damage Model

Damage models work with certain internal variables that characterize the den-
sity and orientation of microdefects. To introduce the basic concepts, we start from
the case of uniaxial stress. For the present purpose, the material is idealized as a



2 M. Jirasek

Figure 1. Representation of a uniaxial damage model as a bundle of parallel elastic
fibers breaking at different strain levels

bundle of fibers parallel to the direction of loading (Fig. 1a). Initially, all the fibers
respond elastically, and the stress is carried by the total cross section of all fibers,
A (Fig. 1b). As the applied strain is increased, some fibers start breaking (Fig. 1c).
Each fiber is assumed to be perfectly brittle, which means that the stress in the fiber
drops down to zero immediately after a critical strain level is reached. However,
since the critical strain is different for each fiber, the effective area A (i.e., the area
of unbroken fibers that can still carry stress) decreases gradually from A = A to
A = 0. We have to make a distinction between the nominal stress o, defined as the
force per unit initial area of the cross section, and the effective stress &, defined as
the force per unit effective area. The nominal stress enters the Cauchy equations
of equilibrium on the macroscopic level, while the effective stress is the “true”
stress acting in the material microstructure.! From the condition of equivalence,
oA = GA, we obtain .
A
A
The ratio of the effective area to the total area, A/A, is a scalar characterizing the
integrity of the material. In damage mechanics it is customary to work with the
damage variable defined as

c==a (1)

A A-A A
D=1-—=——_"=22 2
A A A @
where A; = A— A i§ the damaged part of the area. An intact (undamaged) material
is characterized by A = A,i.e.,by D = 0. Due to propagation of microdefects and

'Of course, detailed micromechanical analysis would reveal local oscillations of the stress fields
dependent on the specific defect geometry, and the representation of the actual stress distribution by
one averaged value —the effective stress—is just a simplification for modeling purposes.
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Figure 2. Evolution of effective stress &, damage variable D and nominal stress o
under a) monotonic loading, b) non-monotonic loading

their coalescence, the damage variable grows and at late stages of the degradation
process it attains or asymptotically approaches the limit value D = 1, correspond-
ing to a completely damaged material with effective area reduced to zero. In the
simplest version of the model, each fiber is supposed to remain linear elastic up to
the strain level at which it breaks.> Consequently, the effective stress & is governed
by Hooke’s law,

g = FEe (3)
Combining (1)—(3) we obtain the constitutive law for the nominal stress,
o= (1—D)Ee 4)

Damage evolution can be characterized by the dependence of the damage variable
on the applied strain,

D = g(e) (5)

In general, the fictitious “fibers™ can obey any (nonlinear) constitutive law, which provides one
possible framework for coupling of damage with other dissipative phenomena, such as plasticity.
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Function g affects the shape of the stress-strain diagram and can be directly iden-
tified from a uniaxial test. The evolution of the effective stress, damage variable.
and nominal stress in a material that remains elastic up to the peak stress is shown
in Fig. 2a. This description is valid only for monotonic loading by an increasing
applied strain =. When the material is first stretched up to a certain strain level £
that induces damage D; = g(£2) and then the strain decreases (Fig. 1d), the dam-
aged area remains constant and the material responds as an elastic material with a
reduced Young’s modulus £ = (1 — D3)E. This means that, during unloading
and partial reloading, the damage variable in (4) must be evaluated from the largest
previously reached strain and not from the current strain £. It is convenient to in-
troduce an internal variable » characterizing the maximum strain level reached in
the previous history of the material up to a given time . i.e., to set

k(t) = maxe(T) (6)

<t

where ¢ is not necessarily the physical time—it can be any monotonically increas-
ing parameter controling the loading process. The damage evolution law (5) is

then replaced by equation
D = g(k) (7

that remains valid not only during monotonic loading but also during unloading
and reloading. The evolution of the effective stress, damage variable, and nominal
stress in a non-monotonic test is shown in Fig. 2b. Note that, upon a complete
removal of the applied stress, the strain returns to zero (due to elasticity of the
yet unbroken fibers), i.e., the pure damage model does not take into account any
permanent strains. Nevertheless, the material state is different from the initial
virgin state, because the damage variable is not zero and the stiffness and strength
mobilized in a new tensile loading process are smaller than their initial values. The
loading history is reflected by the value of the damage variable D.

To gain further insight, we rewrite the constitutive law (4) in the form o = E ¢
where Eg = (1 — D) FE is the apparent (damaged) modulus of elasticity. Instead of
defining the variable « through (6), we introduce a loading function f (=, k) = e—+
and postulate the loading-unloading conditions in the Kuhn-Tucker form,

f<0, £20, £f=0 (8)

The first condition means that £ can never be smaller than £, and the second con-
dition means that x cannot decrease. Finally, according to the third condition,
can grow only if the current values of £ and « are equal.
The basic ingredients of the uniaxial damage theory are summarized as follows:
o the stress-strain law in the secant format,

o= E,¢e 9)



o

Damage and Smeared Crack Models

e the equation relating the apparent stiffness to the damage variable,

E;,=(1-D)E (10)

the law governing the evolution of the damage variable,

D = g(k) (11)

the loading function
fle.g) ==k (12)

specifying the elastic domain £, = {¢| f(¢,k) < 0}, i.e., the set of states
for which damage does not grow. and
the loading-unloading conditions (8).

1.2 Damage Models with Strain-Based Loading Functions

Simple Models with One Damage Variable. The simplest extension of the uni-
axial damage theory to general multiaxial stress states is achieved by the isotropic
damage model with a single scalar variable. Isotropic damage models are based
on the simplifying assumption that the stiffness degradation is isotropic, i.e., stiff-
ness moduli corresponding to different directions decrease proportionally, inde-
pendently of the direction of loading. Since an isotropic elastic material is char-
acterized by two independent elastic constants, a general isotropic damage model
should deal with two damage variables. The model with a single variable makes
use of an additional assumption that the relative reduction of all the stiffness coeffi-
cients is the same, in other words, that the Poisson ratio is not affected by damage.
Consequently, the damaged stiffness tensor is expressed as

Es=(1—-D)E (13)

where E is the elastic stiffness tensor of the intact material, and D is the damage
variable. In the present context, Eg is the secant stiffness that relates the total
strain to total stress, according to the formula

ocg=Es:e=(1-D)E:¢ (14)

Clearly, (13) is a generalization of (10), and (14) is a generalization of (9) and (4).
In terms of the effective stress tensor, defined as

o=E:e (15)
equation (14) can alternatively be written as

o=(1-D)o (16)
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Figure 3. Loading surfaces for various definitions of equivalent strain
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which is the multidimensional generalization of (1).

Similar to the uniaxial case, we introduce a loading function f specifying the
elastic domain and the states at which damage grows. The loading function now
depends on the strain tensor, £, and on a variable « that controls the evolution of
the elastic domain. Physically, « is a scalar measure of the largest strain level ever
reached in the history of the material. States for which f(e,x) < 0 are supposed
to be below the current damage threshold. Damage can grow only if the current
state reaches the boundary of the elastic domain. This is described by the loading-
unloading conditions (8). It is convenient to postulate the loading function in the
form

fle,k)=E(e) — w (17)

where £ is the equivalent strain, i.e., a scalar measure of the strain level.

In some sense, the expression defining the equivalent strain plays a role similar
to the yield function in plasticity, because it directly affects the shape of the elastic
domain. The simplest choice is to define the equivalent strain as the Euclidean
norm of the strain tensor,

&=l = veTe = vegEg (18)

or as the energy norm,

oy

e:E:e 1
= \/T = \/EEijklfiJEkl (19)

where F;jx; are the components of the elastic stiffness tensor IE and normalization
by Young’s modulus E is introduced in order to obtain a strain-like quantity. Each
particular definition of equivalent strain corresponds to a certain shape of the elas-
tic domain in the strain space and can be transformed into the stress space. For
illustration, Fig. 3(top) shows the elastic domains in projection onto the principal
strain plane and in the principal stress plane for the case of plane stress and Pois-
son’s ratio v = (.2. The domains are elliptical and symmetric with respect to the
origin. Consequently, there would be no difference in the response to tensile and
compressive loadings.

For concrete and other materials with very different behaviors in tension and
in compression, it is necessary to adjust the definition of equivalent strain. Micro-
cracks in concrete grow mainly if the material is stretched, and so it is natural to
take into account only normal strains that are positive and neglect those that are
negative. This leads to the so-called Mazars definition of equivalent strain (Mazars,
1984)

€= |[{e)ll = V/(e) : (e) (20)
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or to its energetic counterpart,

(€) :E: (e)
E

m

(21)

where McAuley brackets (.) denote the “positive part” operator. For scalars, (x) =
max(0,x), i.e., (z) = x for x positive and (x) = 0 for = negative. For symmetric
tensors, such as the strain tensor &, the positive part is a tensor having the same
principal directions 72y as the original one, with principal values £ replaced by
their positive parts (). The subscript I ranges from 1 to 3 (the number of spatial
dimensions) but it is not subject to Einstein’s summation convention because the
principal strains £; are not components of a first-order tensor. In terms of the
spectral decomposition
3
=) en@ng (22)
=1

the positive part of € is expressed as

3

(€)= (e ni®@n (23)

I=1

Since (n; @ ny) : (ny @ ny) = dr; = Kronecker's delta, definition (20) can be
rewritten as

(24)

The elastic domains corresponding to (20) and (21) are shown in Fig. 3(center).
If a model corresponding to the Rankine criterion of maximum principal stress
is desired, one may use the definitions

3 - . — 1 rea
TE 12&%3“2 velr= E 11=nl€.l§(.3<01> (25)
or
o1 1 1
= LBz o) = = -2 26)

where (7;) = (E : )7, I = 1,2, 3, are the positive parts of principal values of
the effective stress tensor (15). The former definition exactly corresponds to the
Rankine criterion while the latter rounds off the corners in the octants with more
than one positive principal stress; see Fig. 3(bottom).
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Figure 4. Biaxial strength envelope for concrete and its approximation by isotropic
damage models with Rankine and modified Mises definition of equivalent strain

An alternative formula, called the modified von Mises definition (de Vree et al.,
1995), reads

(k=1L 1 [(h—12 , 12kJa
2k(1 — 2v) +2k (1—21/)2[J5+ (14 )2 &n

(L1

where
le=1:e=3¢ey (28)

is the first strain invariant (trace of the strain tensor),

J‘2e =

-

ere=1le:e— LI} (29)

is the second deviatoric strain invariant, and k is a model parameter that sets the
ratio between the uniaxial compressive strength f,. and uniaxial tensile strength
[t. The elastic domains corresponding to the modified von Mises definition have
ellipsoidal shapes but their centers are shifted from the origin along the hydrostatic
axis (except for the special case with parameter £ = 1, which corresponds to the
standard von Mises definition, with equivalent strain proportional to \/.75;).

The uniaxial tensile strength and uniaxial compressive strength can be fitted,
but the shape of the elastic domain in the tension-compression quadrant of the prin-
cipal stress plane does not correspond to experimental data for concrete (Kupfer
etal., 1969) and the shear strength is overestimated, see Fig. 4.
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An important advantage of isotropic damage models is that the stress evalua-
tion algorithm is usually explicit, without the need for an iterative solution of one
or more nonlinear equations. The choice of a loading function in the form (17)
endows the variable x with the meaning of the largest value of equivalent strain
that has ever occured in the previous deformation history of the material up to its
current state; cf. (8). In other words, (6) can be generalized to

k(t) = 1323{5(7’) (30)

For a prescribed strain increment, the corresponding stress is evaluated simply
by computing the current value of equivalent strain, updating the maximum previ-
ously reached equivalent strain and the damage variable, and reducing the effective
stress according to (14). Depending on the definition of equivalent strain one may
have to extract the principal strains or principal stresses. This can be done very
easily, since closed-form formulas for the eigenvalues of symmetric matrices of
size 2 x 2 or 3 x 3 are available.

The damaged stiffness tensor Eg = (1 — D)E introduced in (13) links the total
stress to total strain and plays the role of the tangent stiffness only for unloading
with constant damage (f < 0 or f < (). To construct the tangent stiffness tensor
for loading with growing damage (f = 0 and f = 0), we need to find the link
between stress and strain increments or rates. The damage rate can be expressed in
terms of the strain rate using the consistency condition f = () with the rate of the
damage loading function evaluated from (17) and combining it with the rate form
of equation (11): )

p-d9,_d9. do0¢

ds ds dk Oe

For convenience, we introduce symbols g’ for the derivative dg/dr of the damage

function, and 1 for the second order tensor 9z /e obtained by differentiation of

the expression for the equivalent strain with respect to the strain tensor. Substitut-
ing D = g'n : & into the rate form of the stress-strain law (14) we get

TE (31)

6=(1-DE:é-E:eD=(1-DE:é—6(¢n:&)=Eq: & (32)
where o = IE : e is the effective stress and
E.a=(1-DE-gaon (33)

is the elasto-damage stiffness tensor. It is interesting to note that for a model with
the equivalent strain based on the energy norm, eq. (19), the tensor 77 is given by

S SER . TR

77—05 2/E:E:6E E
FE

(34)

U1
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and the resulting elasto-damage stiffness tensor

!

Eey = (1 - D)E — %5@& (35)

exhibits major symmetry (E,?J‘.‘M = Ei_‘}i ;). For other definitions of equivalent
strain, this kind of symmetry is lost.

Mazars Damage Model. A popular damage model specifically designed for
concrete was proposed by Mazars (Mazars, 1984, 1986). He introduced two dam-
age variables, D, and D,., that are computed from the same equivalent strain (24)
using two different damage functions, g; and g.. Function g, is identified from
the uniaxial tensile test while g. corresponds to the compressive test. The dam-
age variable entering the constitutive equations (14) is D = I, under tension and
D = D, under compression. For general stress states the value of D is obtained
as a linear combination

D= oDy + a.D, (36)

where the coefficients o; and o, take into account the character of the stress state.
In the recent implementation of Mazars model, these coefficients are evaluated as

3 AP AT L
a = (Z M) , f, = (1 =3 #) (37)

=1 I=1

where g7, I = 1,2, 3, are the principal strains due to positive stresses, i.e., the
principal values of e, = C : (E : €). in which C = E~! is the elastic compliance
tensor. The exponent 5 = 1.06 slows down the evolution of damage under shear
loading (i.e., when principal stresses do not have the same sign). In the original
version of the model (Mazars, 1984), 5 was equal to 1.

Note that if all principal stresses are nonnegative we have oy = 1, . = 0, and
D = Dy, and if all principal stresses are nonpositive we have a; = 0, . = 1, and
D = D.. These are the “purely tensile™ and “purely compressive™ stress states.
For intermediate stress states the value of D is between D; and D, depending
on the relative magnitudes of tensile and compressive stresses. Functions charac-
terizing the evolution of damage were originally proposed in the form (Mazars.
1984)

0 if K<egy

gi(k) = € (38)
l( ) ]—(1—At):?—AteXp[-Bg(hﬁ‘—En)] if K 2 €Ep

0 if K<e¢gp

£0 . (39)
1—(1- A,_.)? — Acexp[—B.(k —g0)] if Kk>eg



