Operating System
Concepts

Second Edition

James L. Peterson
Abraham Silberschatz

Operating System 45
Concepts

Second Edition

James L. Peterson

Kbraham Silberschatz

University of Texas at Austin

N

V‘V Addison-Wesley Publishing Company

Reading, Massachusetts ® Menlo Park, California
DonMills, Ontario ® Wokingham, England ® Amsterdam
Sydney ¢ Singapore ® Tokyo ® Mexico City ® Bogota
Santiago ® San Juan

\

\

A
\ , N oy
To my, parents, Wira and Mietek, my wife, Haya,
knd my children, Lemor, Sivan and Aaron.

Avi Silberschatz

To my wife, jeanti,

and my children, Jennifer and Ko

f; v 3o
im 1°e

R TR
-

terson

Mark Dalton: Sponsoring Editor

Hugh Crawford: Manufacturing Supervisor

Karei: Guardino: Production Marager

Thomas A. Philbrook and Barbara Atkinson: Cover Designers
Susan E. Vicenti: Art Edito:

Natasha Wei: Production Editor

This book is in the Addison-Wesley series = Computer Science
Michaal A. Harrison: Consulting Editor

Library of Congress Cataloging in Publication Data

Peterson, James Lyle.

Operating system concepts.

Bibliography: p.

Includes index.

1. Operating systems (Computers} 1. Silberschatz,
Abraham. I Title.
QA76.6.P4_75 1985 . 001.64°2 84-21637
iSBN 0-201-06198-8 ‘
Scope® Registered trademark of Controi Data Corporation
VMS™ Trademark of Digital Equipment iZcrporation
CP/M® Registered trademark of Digital Research Incorporated

UNIX™ Trademark of Bell Laboratories
Reproduced by Addison-Wesley from camera-ready copy orepared by the authors

Copyright © 1985, 1983 by Addison-Wesley Publishing Company Inc.

All rights reserved. No part of this publication may be rep oduced, stored in a retrieval systemn or
_transmitted, in any form or by any means, electronic, mechanical, photocopying, recording. or
otherwise, without the prior written permission of the publisher. Printed ir the United States of

America. Published simultaneously in Canada.

CDEFCHIJ-AL-80876

Preface

Operating systeins are an essential part of a computer system.
Similarly, a course on operating systems is an essential part of a
computer science education. This book is intended as a text for an
introductory course in operating systems at the junior, senior, or first-
year graduate level. It provides a clear description of the concepts which
underlie operatmg systems.

This book is not centered around any particular operating system or
hardware. Instead, it discusses fundamental concepts which are
applicable to a variety of systems. Our emphasis is on solving the
problems encountered in designing an operating system, regardless of
the underlying hardware on which the system will run.

Content of this Book
The overall content of the book is as follows:

1 Introduction .
2 Operating System Services
3 File Systems
4 CPU Scheduling
5 Memory Management
. 6 Virtual Memory
7 Disk and Drum Scheduling
8 Deadlocks
9 Concurrent Processes
10 Concurrent Programming
11 Protection
12 Design Principles
13 Distributed Systems
14 The Unix Operating System
15 Historical Perspective

iv Preface

As prerequisites, we assume the reader is familiar with general
assembly language programming and computer organization. We do not
discuss in any detail the characteristics of I/O devices or how to write
device drivers. :

Chapters 1, 2, and 3 explain what operating systems are and what
they do. These chapters explain how the concept of an operating system
has developed, the common features of an operating system, what it
does for the user, and what it does for the computer system operator. It
is motivational, historical, and explanatory in nature. We try to avoid -
how things are done internally in these chapters. Therefore, these
chapters are suitable for individuals or lower-level classes who want to
learn what an operating system is, without getting into the details of the
internal algorithms.

Chapters 4 to 8 deal with the classic internal algorithms and
structures of operating systems: cpu scheduling, memory management, and
device management. They provide a firm practical understanding of the
algorithms used: their properties, advantages, and disadvantages. The
algorithms are presented in a natural order, so that new, more
complicated systems can be bmlt upon the understanding of simpler
systems.

Chapter 9 introduces the umfymg concept of the computer system
as a collection of cooperating sequential processes, Chapters 10, 11, 12,
and 13 present advanced topics and current trends, including high-level
languages for writing concurrent programs, protection systems, design
principles, and distributed systems.- These topics are still being
researched and may well need later revision. However, we include them
in the book for two reasons. First, although research is still ongoing
and final solutions to these problems are still being sought, there is.
general agreement that these topics are important and students should
be exposed to them. Second, existing systems use these solutions, and

anyone working with operating systems over the next five years will ..

need to be aware of the developments in these directions.

In response to many requests, however, we have included a new
chapter to illustrate how the many described concepts can be put
-together in a real system. We have:chosen the Unix operating system,
- specifically Berkeley’s 4.2BSD, for this example system. This operating
- system was chosen in part because it was at one time almost small
enough to understand and yet is not a “toy” operating system. Most of
its internal algorithms were selected for simplicity, not speed or
sophistication. Unix is readily available to computer science
departments, so many students may have used Unix.

Preface . v

Each chapter ends with references to further reading. Chapter 15 is
essentially a set of references to further reading for the entire book,
describing briefly some of the most influential operating systems.

Organization

Operating systems first began to appear in the late 1950’s, and for
twenty years underwent major changes in concepts and technology. As
- a result, the first-generation operating system textbooks that appeared
during this period (such as Brinch Hansen [1973a], Madnick and
-Donovan [1974], Shaw [1974], Tsichritzis and Bernstein [1974]) tried to
explain a subject that changed even as they were being written.

Now, however, operating system theory and practice appears to
have matured and stabilized. The fundamental operating system
concepts are now well defined and well understood. While there will
undoubtedly be new algorithms, the basic approach to cpu scheduling, -
memory management, the user interface, and so on, is not likely to
change. Few really new operating systems are being written. Most 1
computers use operating systems that were designed in the 1960's. The
newest operating systems are being developed for the multitude of
microcomputer systems, but these are generally either CPM, Unix, or
imitations of these. It is now possible to write a book that presents
well-understood, agreed-upon, classic operating system material.

This text is one of a second generation of operating system textbooks
(such as Calingaert [1982]). Our text differs from other texts in the level
of content and organization. The basic concepts have been carefully
_organized and presented; the material flows naturally from these basic

- principles to more sophisticated ones.

The only controversial aspect of this book is its organization,
specifically the definition of the formal process model as late as Chapter
9. Almost every other text places this material at the beginning as
Chapter 2. In our experience, this arrangement does not work. The
process model is a powerful and convenient unifying concept. However,
when operating systems are first introduced, the student does not know
the basic principles. To benefit from the process model, the student
needs to understand how cpu scheduling and memory management can
present an image of separate virtual processors, each with its own
separate virtual memory space. Then, and only then, will the student

~ really be able to understand why the process model is useful. Once the -
student has the proper background to be able to appreciate the process

vi Preface

model of operating systems, the standard material concerning processes,
process coordination, synchronization, and communication can be
presented.

Concurrency itself, in the form of overlapped VO, spooling,
multiprogramming, and time-sharing, is introduced as early as Chapter
1. However, we feel that the formal process model is best reserved until
the basic concepts (cpu scheduling and memory management) are well
understood

"The Second Edition

Many comments and suggestions were forwarded to us concerning our
first edition. These, together with our own observations while teaching
at the Umversxty of Texas and IBM, have prodded us to produce this
second gdition. Our basic procedure was to reorganize and rewrite the
material in each chapter, to bring some of the older material up-to-date,
' to improve the exercises, and to add a new chapter on Unix.

Substantive revisions were made in the following chapters:

® Chapter 1. A new organization clearly separates the performance
and protection aspects of operating systems.

® Chapter 3. Sections have been reorganized to present a more natural
flow of information, discussing first files, and then directories.

® Chapter 8. Additional examples illustrate the behavior of the various
algorithms. Section 8.6, on recovery, has been rewritten to obtain a
better organization.

® Chapter 9. Section 9.5 has been rewritten to bring the material up-
to-date. In particular, a new, more concise definition of the critical
section problem has been included, Dekker’s algorithm for the
synchronization of two processes has been replaced with Peterson’s
algorithm, and a new synchronization algorithm using special
hardware instructions (that is, test and set) has been included. The
section of the RC4000 system has been replaced by a discussion of
the more modern Accent system. t

o Chapter 13. A new subsection on the Byzantine general problem has
been added.

© Chapter 14. A problem common to students (and professors) using
the first edition was that they felt overwhelmed by the variety of
solutions to the many aspects of operating systems. It was difficult

‘ v

Preface vii

to see how a complete system would fit all the pieces together. To
address this problem, we have added a chapter on a complete
operating system. The initial problem was to create either a “paper”
design (such as that used in Lister [1979]) or a real system. Ye .
decidég,to present a real system. The next problem was to choose a
particular system. We chose Unix, specifically 4.2 BSD.

@ Chapter 15. Since a new Chapter 14 was added, the old Chapter 14
(without the section on Unix) was renumbered Chapter 15.

Errata

We have attempted to clean up every error in this book, but as with
operating systems, there will undoubtedly still be some obscure bugs.
We would appreciate it if you, the reader, would notify us of any errors
or omissions in the book. If you would like to suggest improvements or
contribute exercises, we would be glad to hear from you. An errata
sheet is available to instructors for the first edition, and we will update
it with errors in this edition as they become known.

Acknowledgments

Eight years of CS 372 students at the University of Texas at Austin
suffered through permutations of this material until we got it right.
David Orshalick helped with the early table of contents. Dick Kieburtz
helped with the contents of Section 11.9 on language-based protection.
During the writing stage, we were invited to design and teach an
operating system course for IBM, which helped clarify our organization.

As the text was written, Carol Engelhardt deciphered our
handwriting and edited our text into Scribe format. Carol's efforts
throughout this project were the only thing that got it done.

Jeff Ullman helped us to get draft copies on the Dover at Stanford.
Arthur Keller helped get those drafts back to Texas. Susan Lilly was able
to understand what we were trying to say in the drafts and edit them
into readable text. Elaine Rich, Richard Cohen, and Brian Reid explained
the subtleties of Scribe, helping us to define our documents and make
them work. The manuscript was read in various forms by Michael
Molloy, Gael Buckley, and the reviewers.

During the lengthy revision process for this Second Edition, the
Information Technology Center of Carnegie-Mellon University provided
a supportive work environment.

viii Preface

Chapter 14 is derived from a draft by John Quarterman, who
received comments on earlier drafts from Samuel J. Leffler, Bill
Shannon, William N. Joy, and John B. Chambers. John Quarterman
endured months of our questions and endless reviews as we struggled
to write and rewrite the chapter. The credit for this chapter should go to
John Quarterman, while any errors in presentation or fact for Chapter
14, as with the rest of the book, are, of course, ours.

Finally, we would like to acknowledge the helpful reviewing of
Larry Flanigan, University of Michigan; William Appelbe, University of
California at San Diego; Christopher Haynes, Indiana University; and
Raymond Hookway, Case Western Reserve University.

J.P.
AS.

.Wi 7} F8702/61 (3£3-5/3880)
§8-2-§ HIERGIE 125

BG000680

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

Chapter 2

21
2.2
23
24

Chapter 3

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8

Introduction

What Is an Operating System?
Early Systems

Simple Monitor

Performance
Multiprogramming

Time Sharing

Real-Time Systems

Protection :

Different Classes of Computers
Multiprocessor Systems
Summary

Exercises ;

Bibliographic Notes

Operating System Services

Types of Services

The User View

The Operating System View
Summary

Bibliographic Notes

File Systems

File Concept

File Support

Access Methods
Allocation Methods
Directory Systems

File Protection
Implementation Issues
Summary

Exercises
Bibliographic Notes

Contents

SEEES YRLBURNNED 0o m

S88R8BIBRY

e

~

x Table of Contents

Chapter 4 CPU Scheduling

4.1 Review of Multiprogramming Concepts 103
4.2 Scheduling Concepts 105
4.3 Scheduling Algorithms 115
4.4 Algorithm Evaluation 129
4.5 Multiple Processor Scheduling 135
4.6 Summary 136

Exercises 137

Bibliographic Notes 141

‘Chapter 5 Memory Management

5.1 Preliminaries’ 143
5.2 Bare Machine 145
5.3 Resident Monitor 146
5.4 Swapping . 152
5.5 Multiple Partitions 156
5.6 Paging : 172
5.7 Segmentation 183
5.8 Combined Systems 191
5.9 Summary 194

Exercises 196

Bibliographic Notes . 200

Chapter 6 Virtual Memory

6.1 Overlays 201
6.2 Demand Paging 204
6.3 Performance of Demand Pagmg 210
6.4 Page Replacement ' 213
6.5 Virtual Memory Concepts 216
6.6 Page Replacement Algorithms 217
'6.7 Allocation Algorithms ‘ 228
6.8 Thrashing 232
6.9 Other Considerations 238 -
6.10 Summary 244
Exercises - Ll 246

Bibliographic Notes 254

Chapter 7

7.1
7.2
7.3
7.4
73
7.6
7F

Chapter 8

8.1
8.2

83

8.4
8.5
8.6
8.7
8.8

Chapter 9

9:1
9.2
9.3
9.4
95
9.6
& 4
9.8
9.9

Table of Contents

Disk épd Drum Scheduling

Physical éharacteristics
First-Come-First-Served Scheduling
Shortest-Seek-Time-First

SCAN

Selecting a Disk Scheduling Algorithm
Sector Queueing

Summary

Exercises

Bibliographic Notes

Deadlocks

The Deadlock Problem

Deadlock Characterization

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

Combined Approach to Deadlock Handling
Summary

Exercises’ :

Bibliographic Notes

Concurrent Processes

" Precedence Graphs

Specification

Review of Process Concept

Hierarchy of Processes

The Critica! Section Problem
Semaphores

Classical Process Coordmahon Problems
Interprocess Communication
Summary

Exercises

Bibliographic Notes

xi

261

. 262

265
266
268
268
270

271
275
280
283
291
295
298

301

310
318

323

349
361
361
367

xii Table of Contents

Chapter 10

10.1
10.2
10.3
10.4
10.5

Chapter 11

11.1
11.2
b §
11.4
11.5
11.6
11.7
11.8
119
11.10
11.11

1112

Chapter 12

12.1
122

123
124

12.5
12.6
12,7

12.8

Concurrent Programming

Motivation
Modularization—
Synchronization
Concurrent Languages
Summary

Exercises

Bibliographic Notes

Protection

Goals of Protection
Mechanisms and Policies
Domain of Protection

Access Matrix
Implementation of Access Matrix
Dynamic Protection Structures
Revocation

Existing Systems
Language-Based Protection
Protection Problems

Security

Summary

Exercises

Bibliographic Notes

Design Principles °

Goals £ :
Mechanisms and Policies
Layered Approach
Virtual Machines
Multiprocessors
Implementation
System Generation

')_‘ :
Exercises

369
370
375
393

401

407
408

410
411
415
420
422
427
432

436

436

438

441

449
450
451
453
453
455

* Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

13.10
13.11
1BE
13.13

" ety ’Chap_ter. 14

14.1
14.2
14.3

144
14.5
14.6
14.7
14.8
14.9

14.10

Chapter 15

15.1
152
15.3
15.4
155
15.6
15.7
15.8

Table of Contents

Distributed Systems

Motivation
Topology
Communication
System Type

File Systems

Mode of Computation
Event Ordering
Synchronization
Deadlock Handling
Robustness
Reaching Agreement
Election Algorithms
Summary

_ Exercises

Bibliographic Notes

The Unix Operating System
History .

Design Principles
Programmer Interface

User Interface

File System

Process Management
Memory Management

IO System

Interprocess Communication
Summary -

Bibliographic Notes

Historical Perspective

‘Atlas

XDS-940

THE

RC 4000

CTSS

Multics
05/360

Other Systems

xiii

457
459

471
474
476
478
481
486
494
496
499
502
503
504 -

507
510
512
519
523
532
537
541
545
551
552

555
557
557
558

561
561

Xiv

Table of Contents

Bibliography

Index

601

1

Introduction

An operating system is a program which acts as an interface between a
user of a computer and the computer hardware. The purpose of an
operating system is to provide an environment in which a user may
execute programs. The primary goal of an operating system is thus to
make the computer system convenient to use. A secondary goal is to use
the computer hardware in an efficient manner.

To understand what operating systems are, it is necessary to
understand how they have developed. In this chapter, we trace the
development of operating systems from the first hands-on systems to
current multiprogrammed and time-shared systems. As we move
through the various stages, we see how the components of operating
systems evolved as natural solutions to problems in early computer
systems. = Understanding the reasons behind the development of
operating systems gives an appreciation for what an operating system
does and how it does it.

1.1 What Is an Operating System?
An operating system is an important part of almost every computer
system. A computer system can be roughly divided intp 4 components
(Figure 1.1):

® The hardware (cpu, memory, I/O devices).

@ The operating system.

® The applications programs (compilers, database systems, video
games, business programs).

@ The users (people, machines or other computers).

The hardware provides the basic computing resources. The applications
programs define the ways in which these resources are used to solve the

