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Preface

Operating systeins are an  essential part of a computer system.
Similarly, a course on operating systems is an essential part of a
computer science education. This book is intended as a text for an
introductory course in operating systems at the junior, senior, or first-
year graduate level. It provides a clear description of the concepts which
underlie operatmg systems.

This book is not centered around any particular operating system or
hardware. Instead, it discusses fundamental concepts which are
applicable to a variety of systems. Our emphasis is on solving the
problems encountered in designing an operating system, regardless of
the underlying hardware on which the system will run.

Content of this Book
The overall content of the book is as follows:

1 Introduction .
2 Operating System Services
3 File Systems
4 CPU Scheduling
5 Memory Management
. 6 Virtual Memory
7 Disk and Drum Scheduling
8 Deadlocks
9 Concurrent Processes
10 Concurrent Programming
11 Protection
12 Design Principles
13 Distributed Systems
14 The Unix Operating System
15 Historical Perspective



iv Preface

As prerequisites, we assume the reader is familiar with general
assembly language programming and computer organization. We do not
discuss in any detail the characteristics of I/O devices or how to write
device drivers. :

Chapters 1, 2, and 3 explain what operating systems are and what
they do. These chapters explain how the concept of an operating system
has developed, the common features of an operating system, what it
does for the user, and what it does for the computer system operator. It
is motivational, historical, and explanatory in nature. We try to avoid -
how things are done internally in these chapters. Therefore, these
chapters are suitable for individuals or lower-level classes who want to
learn what an operating system is, without getting into the details of the
internal algorithms.

Chapters 4 to 8 deal with the classic internal algorithms and
structures of operating systems: cpu scheduling, memory management, and
device management. They provide a firm practical understanding of the
algorithms used: their properties, advantages, and disadvantages. The
algorithms are presented in a natural order, so that new, more
complicated systems can be bmlt upon the understanding of simpler
systems.

Chapter 9 introduces the umfymg concept of the computer system
as a collection of cooperating sequential processes, Chapters 10, 11, 12,
and 13 present advanced topics and current trends, including high-level
languages for writing concurrent programs, protection systems, design
principles, and distributed systems.- These topics are still being
researched and may well need later revision. However, we include them
in the book for two reasons. First, although research is still ongoing
and final solutions to these problems are still being sought, there is.
general agreement that these topics are important and students should
be exposed to them. Second, existing systems use these solutions, and

anyone working with operating systems over the next five years will ..

need to be aware of the developments in these directions.

In response to many requests, however, we have included a new
chapter to illustrate how the many described concepts can be put
-together in a real system. We have:chosen the Unix operating system,
- specifically Berkeley’s 4.2BSD, for this example system. This operating
- system was chosen in part because it was at one time almost small
enough to understand and yet is not a “toy” operating system. Most of
its internal algorithms were selected for simplicity, not speed or
sophistication. Unix is readily available to computer science
departments, so many students may have used Unix.
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Each chapter ends with references to further reading. Chapter 15 is
essentially a set of references to further reading for the entire book,
describing briefly some of the most influential operating systems.

Organization

Operating systems first began to appear in the late 1950’s, and for
twenty years underwent major changes in concepts and technology. As
- a result, the first-generation operating system textbooks that appeared
during this period (such as Brinch Hansen [1973a], Madnick and
-Donovan [1974], Shaw [1974], Tsichritzis and Bernstein [1974]) tried to
explain a subject that changed even as they were being written.

Now, however, operating system theory and practice appears to
have matured and stabilized. The fundamental operating system
concepts are now well defined and well understood. While there will
undoubtedly be new algorithms, the basic approach to cpu scheduling, -
memory management, the user interface, and so on, is not likely to
change. Few really new operating systems are being written. Most 1
computers use operating systems that were designed in the 1960's. The
newest operating systems are being developed for the multitude of
microcomputer systems, but these are generally either CPM, Unix, or
imitations of these. It is now possible to write a book that presents
well-understood, agreed-upon, classic operating system material.

This text is one of a second generation of operating system textbooks
(such as Calingaert [1982]). Our text differs from other texts in the level
of content and organization. The basic concepts have been carefully
_organized and presented; the material flows naturally from these basic

- principles to more sophisticated ones.

The only controversial aspect of this book is its organization,
specifically the definition of the formal process model as late as Chapter
9. Almost every other text places this material at the beginning as
Chapter 2. In our experience, this arrangement does not work. The
process model is a powerful and convenient unifying concept. However,
when operating systems are first introduced, the student does not know
the basic principles. To benefit from the process model, the student
needs to understand how cpu scheduling and memory management can
present an image of separate virtual processors, each with its own
separate virtual memory space. Then, and only then, will the student

~ really be able to understand why the process model is useful. Once the -
student has the proper background to be able to appreciate the process
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model of operating systems, the standard material concerning processes,
process coordination, synchronization, and communication can be
presented.

Concurrency itself, in the form of overlapped VO, spooling,
multiprogramming, and time-sharing, is introduced as early as Chapter
1. However, we feel that the formal process model is best reserved until
the basic concepts (cpu scheduling and memory management) are well
understood

"The Second Edition

Many comments and suggestions were forwarded to us concerning our
first edition. These, together with our own observations while teaching
at the Umversxty of Texas and IBM, have prodded us to produce this
second gdition. Our basic procedure was to reorganize and rewrite the
material in each chapter, to bring some of the older material up-to-date,
' to improve the exercises, and to add a new chapter on Unix.

Substantive revisions were made in the following chapters:

® Chapter 1. A new organization clearly separates the performance
and protection aspects of operating systems.

® Chapter 3. Sections have been reorganized to present a more natural
flow of information, discussing first files, and then directories.

® Chapter 8. Additional examples illustrate the behavior of the various
algorithms. Section 8.6, on recovery, has been rewritten to obtain a
better organization.

® Chapter 9. Section 9.5 has been rewritten to bring the material up-
to-date. In particular, a new, more concise definition of the critical
section problem has been included, Dekker’s algorithm for the
synchronization of two processes has been replaced with Peterson’s
algorithm, and a new synchronization algorithm using special
hardware instructions (that is, test and set) has been included. The
section of the RC4000 system has been replaced by a discussion of
the more modern Accent system. t

o Chapter 13. A new subsection on the Byzantine general problem has
been added.

© Chapter 14. A problem common to students (and professors) using
the first edition was that they felt overwhelmed by the variety of
solutions to the many aspects of operating systems. It was difficult

‘ v
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to see how a complete system would fit all the pieces together. To
address this problem, we have added a chapter on a complete
operating system. The initial problem was to create either a “paper”
design (such as that used in Lister [1979]) or a real system. Ye .
decidég,to present a real system. The next problem was to choose a
particular system. We chose Unix, specifically 4.2 BSD.

@ Chapter 15. Since a new Chapter 14 was added, the old Chapter 14
(without the section on Unix) was renumbered Chapter 15.

Errata

We have attempted to clean up every error in this book, but as with
operating systems, there will undoubtedly still be some obscure bugs.
We would appreciate it if you, the reader, would notify us of any errors
or omissions in the book. If you would like to suggest improvements or
contribute exercises, we would be glad to hear from you. An errata
sheet is available to instructors for the first edition, and we will update
it with errors in this edition as they become known.
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1

Introduction

An operating system is a program which acts as an interface between a
user of a computer and the computer hardware. The purpose of an
operating system is to provide an environment in which a user may
execute programs. The primary goal of an operating system is thus to
make the computer system convenient to use. A secondary goal is to use
the computer hardware in an efficient manner.

To understand what operating systems are, it is necessary to
understand how they have developed. In this chapter, we trace the
development of operating systems from the first hands-on systems to
current multiprogrammed and time-shared systems. As we move
through the various stages, we see how the components of operating
systems evolved as natural solutions to problems in early computer
systems. = Understanding the reasons behind the development of
operating systems gives an appreciation for what an operating system
does and how it does it.

1.1 What Is an Operating System?
An operating system is an important part of almost every computer
system. A computer system can be roughly divided intp 4 components
(Figure 1.1):

® The hardware (cpu, memory, I/O devices).

@ The operating system.

® The applications programs (compilers, database systems, video
games, business programs).

@ The users (people, machines or other computers).

The hardware provides the basic computing resources. The applications
programs define the ways in which these resources are used to solve the



