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Preface

For modeling and analysis of phenomena in the life sciences, calculus is an indis-
pensable tool. This is not obvious in a traditional calculus course, where biolog
students rarely see how the material is relevant to their training. This text is written
exclusively for students in the biological and medical sciences. It makes an effort
to demonstrate from the beginning how calculus can help them to understand phe-
nomena in nature. Students find it easier to understand concepts in mathematics if
they are related to their field, and this makes mathematics more interesting.

This text differs in a number of ways from traditional calculus texts. First, it is
written in a life-science context; concepts are motivated with biological examples,
emphasizing that calculus is an important tool in the life sciences. Second, differ-
ential equations, one of the most important modeling tools in the life sciences, are
introduced very early, immediately after the formal definition of derivatives. Third,
biological applications of differentiation and integration are included throughout the
text. Fourth, two chapters deal exclusively with differential equations and systems
of differential equations; both chapters contain numerous up-to-date applications.
Fifth, multivariable calculus is taught in the first year, recognizing that most students
in the life sciences will not take the second year of calculus, and that multivariable
calculus is needed to analyze systems of differential equations, which they will
encounter in their science courses.

This text does not teach modeling; the objective is to teach calculus. Modeling
is an art that should be taught in a separate course. However, throughout the text, stu-
dents encounter mathematical models for biological phenomena; this will facilitate
the transition to actual modeling.

Examples Each topic is motivated with biological examples, followed by a thor-
ough discussion outside of the life-science context, to enable students to become
familiar with both the meaning and the mechanics of the topic. Examples in the text
are completely worked out; steps in calculations are frequently explained in words.

Problems Calculus cannot be learned by watching someone do it. Recognizing
this, students are provided with both drill and word problems. Word problems are an
integral part of teaching calculus in a life-science context. The word problems are
new and up-to-date; they are adapted from either standard biology texts or original
research. Because this text is written for college freshmen, the examples were chosen
so that no formal training in biology is needed.

Technology This book takes advantage of graphing calculators, which allows
students to develop a much better visual understanding of the concepts in calculus.
Beyond that, no special software is required.
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Chapter Summary

Chapter 1 Basic tools from algebra and trigonometry are summarized in Sec-
tion 1.1. Section 1.2 contains the basic functions used in text, including exponential
and logarithmic functions; their graphical properties and biological relevance are
emphasized. Section 1.3 covers log-log and semi-log plots: these are graphical tools
that are frequently used in the life sciences.

Chapter 2  Limits and continuity are key concepts for understanding the conceptual
parts of calculus. Visual intuition is emphasized before the theory is discussed.

Chapter 3 The geometric definition of a derivative as the slope of a tangent line
is given before the formal treatment. After the formal definition of the derivative,
differential equations are introduced as models for biological phenomena. Differen-
tiation rules are discussed. These sections give students time to acquaint themselves
with the basic rules of differentiation before applications are discussed. Related rates
and error propagation, in addition to differential equations, are the main applications.

Chapter 4 This chapter presents biological and more traditional applications of
differentiation. Many of the applications are consequences of the mean value the-
orem. Many of the word problems are adapted from either biology textbooks or
original research articles; this puts the traditional applications (such as extrema,
monotonicity, and concavity) in a biological context.

Chapter 5 Integration is motivated geometrically. The fundamental theorem of
calculus and its consequences are discussed in depth. Both biological and traditional
applications of integration are provided before integration techniques are covered.

Chapter 6 This chapter contains integration techniques. However, only the most
important techniques are covered. Tables of integrals are used to integrate more
complicated integrals. The use of computer software is not covered in the text,
though their usefulness in evaluating integrals is acknowledged.

Chapter 7 This chapter provides an introduction to differential equations. The
treatment is not complete, but it will equip students with both analytical and graph-
ical skills for analysis. Eigenvalues are introduced early, to facilitate the analytical
treatment of systems of differential equations in Chapter 11. Many of the differen-
tial equations discussed in the text are important models in biology. Though this
text is not a modeling text, students will see how differential equations are used
to model biological phenomena, and will be able to interpret differential equations.
Chapter 7 contains a large number of up-to-date applications of differential equations
in biology.

Chapter 8 This chapter contains additional applications of integration, which help
students to understand the importance of integrals. Unless Chapter 12 is included,
some or all sections of this chapter can be omitted. (Sections 8.2—4 should be dis-
cussed before Chapter 12.)

Chapter 9 Matrix algebra is an indispensible tool for every life scientist. The
material in this chapter covers the most basic concepts, tailored to Chapters 10
and 11, where matrix algebra is frequently used. Special emphasis is given to the
treatment of eigenvalues and eigenvectors because of their importance in analyzing
systems of differential equations.

Chapter 10 This is an introduction to multidimensional calculus. The treatment
is brief and tailored to Chapter 11, where systems of differential equations are
discussed. The main topics are partial derivatives and linearization of vector-valued
functions. The discussion of gradient and diffusion are not required for Chapter 11.
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Chapter 11 This material is most relevant for students in the life sciences. Both
graphical and analytical tools are developed to enable students to analyze systems
of differential equations. The material is divided into linear and nonlinear systems.
Understanding the stability of linear systems in terms of vector fields, eigenvectors,
and eigenvalues helps students to master the more difficult analysis of nonlinear
systems. Theory is explained before applications are given—this allows students to
become familiar with the mechanics before delving into applications. An extensive
problem set allows students to experience the power of this modeling tool in a
biological context.

Chapter 12 This chapter contains basic probabilistic and statistical tools. It cannot
replace a full semester course in probability and statistics, but it allows students to
see some of the concepts needed in population genetics and experimental design.

How to Use This Book

This book contains more material than can be covered in one year. This was deliber-
ate, and allows for more flexibility in the choice of material. Sections that are noted
by asterisks in the table of contents can be omitted; their material is not needed in
subsequent sections.

The material can be arranged to suit a one-semester, two-quarter, two-semester,
or four-quarter course. Chapters 1-3 must be covered in that order before any of the
other sections are covered. In addition to Chapters 1-3, the following arrangements
can be chosen:

One semester, emphasis on integration 4.1,4.2,43,44,45,47.5.1,52,53
(without 5.3.4), 6.1

One semester, emphasis on differential equations 4.1,4.2,4.3,44,4.5,4.7,5.1,
5.2,7.1 (without 7.1.2, 7.1.3), 7.2

One semester, emphasis on probability 4.1,42,43,4.4,45,4.7,5.1,5.2, 12.1,
12.2,12.3, 124

Two quarters 4.1,4.2,4.3,44,45,47,5.1,5.2,53,6.1,6.2,6.3, 6.4, 6.5, 6.7,
7.1,7.2,7.3 (one of the subsections), 8.1, 8.2

Two semesters 4.1,42,43, 44,45 47,5.1,52,5.3,6.1,6.2.6.3,6.4.65.6.7.
7.1, 7.2, 7.3 (one of the subsections), 9.1, 9.2 (without 9.2.4). 9.3. 9.4. 10.1. 10.2.
10.3,10.4, 11.1, 11.2, 11.3, 11.4 (two of the subsections)

Four quarters  All sections that are not labeled optional; optional sections should
be chosen as time permits
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Isaac Newton (1642—-1727) and Gottfried Wilhelm Leibniz (1646—1716) are typi-
cally credited with the invention of calculus. They were not the sole inventors but
rather the first to systematically develop it.

Calculus is divided into two parts, differential and integral calculus. Histor-
ically, the problems that led to the development of differential calculus were con-
cerned with finding tangent lines to curves, and extrema (i.e., maxima and minima)
of curves. Integral calculus, on the other hand, has its roots in attempts to determine
the areas of regions bounded by curves, or the volumes of solids. It turns out that the
two parts of calculus are closely related; in fact, the basic operation of one can be
considered the inverse of the other. This result is known as the Fundamental Theorem
of Calculus and goes back to Newton and Leibniz. They were the first to understand
the meaning of this inverse relationship, and to put this relationship to use in solving
difficult problems.

Finding tangents, extrema, and areas are very basic problems, which led to
the development of methods that are useful in solving a wide range of scientific
problems. For this reason, calculus has been one of the most powerful tools in the
mathematical formulation of scientific concepts. For example, many physical laws
and many phenomena in biology are formulated in the language of calculus.

In addition to developing the theory of differential and integral calculus, we will
consider many examples in which calculus is used to describe or model situations
in the biological sciences. The use of mathematics is becoming increasingly more
important in biology, for instance, when modeling interactions between species in a
community, describing neuron activities, explaining genetic diversity in populations,
predicting the impact of global warming on vegetation, and so on.

I.I PRELIMINARIES

We provide a brief review of some of the concepts and techniques from precalculus
that are frequently used in calculus. (The problems at the end of this section will
help you to reacquaint yourself with this material.)



