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Introduction

The fundamental theorem of arithmetic describes the structure of the multi-
plicative group Q* of the field Q of rational numbers as a direct sum

Q*=(z/2e P Z
»p

prime

Namely, a non-zero rational number a has a unique decomposition a = =+ [, p*»(*),
where the exponents v,(a) are integers and are zero for all but finitely many primes
p. This very basic fact brings together the three main objects studied in this book:
multiplicative groups of fields, valuations, and orderings. In fact, as we shall see
later on, the maps v, are all non-trivial valuations on Q, and the + sign corresponds
to its unique ordering.

The attempts to generalize the fundamental theorem of arithmetic to arbitrary
number fields F led to the creation of algebraic number theory. Of course, to make
such a generalization possible, one had to modify the mathematical language used.
The right generalization of both the notion of a prime number as well as of the +
sign turned out to be that of an absolute value: a map |-| from F' to the non-negative
real numbers such that |z| = 0 if and only if z = 0, and such that

|z -yl =1z|-lyl and |z+y|<|z]+ [yl

for all z,y in F. For instance, on Q the usual ordering gives an absolute value
| |oo in the standard way, and each map v, as above gives the p-adic absolute value
|z|, = 1/p*»(®). For the p-adic absolute value |-| = ||, the triangle inequality can
be strengthened to the so-called ultrametric inequality

|z + y| < max{|z], |y[}.

Absolute values having this stronger property are called non-Archimedean, the
rest being referred to as Archimedean. Using these concepts it was possible to
develop one of the most beautiful branches of algebraic number theory: the so-
called ramification theory, which describes the behavior of absolute values under
field extensions, and especially their reflection in Galois groups.

At this point, it was natural to ask for a generalization of this theory to arbitrary
fields F. Unfortunately, the notion of an absolute value, which was satisfactory
in the number field case, is inadequate in general, so better concepts had to be
found. The right substitute for the notion of an Archimedean absolute value has
been systematically developed by E. Artin and O. Schreier in the late 1920s ([Ar],
[AS1], [AS2]), following an earlier work by Hilbert: this is the notion of an ordering
on F, i.e., an additively closed subgroup P of the multiplicative group F'* of F
(standing for the set of “positive” elements) such that F* = P U — P.
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X INTRODUCTION

The proper definition in the non-Archimedean case is more subtle, and was
introduced by W. Krull in his landmark 1931 paper [Kru2]. Roughly speaking,
instead of looking at the absolute value | - | itself, Krull focused on the group
homomorphism v = —log| - |: F* — R. Of course, this minor modification cannot
change much, and is still insufficient for general fields. However, Krull’s conceptual
breakthrough was to replace the additive group R by an arbitrary ordered abelian
group (I', <). Thus what we now call a Krull valuation on the field F is a group
homomorphism v: F* — I', where (I', <) is an ordered abelian group, which satisfies
the following variant of the ultrametric inequality:

v(z +y) > min{v(z),v(y)}

for x # —y.
Krull’s seminal work [Kru2] paved the way to modern valuation theory. Start-

ing from this definition, he introduced some of the other key ingredients of the
theory: valuation rings, the analysis of their ideals, the convex subgroups of (T, <),
and the connections between all these objects and coarsenings of valuations. He
adapted for his general setting the (already existent) notions of decomposition, in-
ertia, and ramification subgroups of Galois groups over F. Furthermore, he studied
maximality properties of valued fields with respect to field extensions. In a some-
what more implicit way he also studied a notion which will later on become central
in valuation theory, namely, Henselian valued fields (although he does not give it
a name). This notion turned out to be the right algebraic substitute in the setup
of Krull valuations for the topological property of completeness. It is analogous to
the notion of a real closed field introduced by Artin and Schreier in the context of
ordered fields. The term “Henselian” is in honor of K. Hensel, who discovered the
field Q, of p-adic numbers, and proved (of course, under a different terminology)
that its canonical valuation is Henselian [He]. We refer to [Ro] for a comprehensive
study of the early (pre-Krull) history of valuation theory.

The classical theory of valuations from the point of view of Krull and his follow-
ers is well presented in the already classical books by O. Endler [En], P. Ribenboim
[Ril], and O.F.G. Schilling [Schi|. Yet, over the decades that elapsed since the
publication of these books, valuation theory went through several conceptual de-
velopments, which we have tried to present in this monograph.

First, the different definitions in the Archimedean and non-Archimedean cases
caused a split of the unified theory into two separate branches of field arithmetic:
the theory of ordered fields on one hand, and valuation theory on the other hand.
While Krull still keeps in [Kru2] a relatively unified approach (at least to the extent
possible), later expositions on general valuation theory have somewhat abandoned
the connections with orderings. Fortunately, the intensive work done starting in the
1970s on ordered fields and quadratic forms (which later evolved into real algebraic
geometry) revived the interest in this connection, and led to a reintegration of
these two sub-theories. T.Y. Lam’s book [Lam2] beautifully describes this interplay
between orderings and valuations from the more restrictive viewpoint of the reduced
theory of quadratic forms, i.e., quadratic forms modulo a preordering (see also
[Lam1] and [Jr]). In the present book we adopt this approach in general, and
whenever possible study orderings and valuations jointly, under the common name
localities.

Second, starting already from Krull’s paper [Kru2], the emphasis in valuation
theory has been on its Galois-theoretic aspects. These will be discussed in detail in
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Part III of the book. However, by their mere definitions, valuations and orderings
are primarily related to the multiplicative group F* of the field F', and much can be
said when studying them in this context. This approach has become dominant in
the ordered field case (as in [Lam2]). However, it is our feeling that in the valuation
case this viewpoint has been somewhat neglected in favor of the Galois-theoretic
one. Therefore, in addition to presenting the classical theory of Galois groups of
valued field extensions, we devote several sections (in Parts IT and IV of the book)
to developing the theory with emphasis on subgroups S of F*. In particular, we
focus on valuations satisfying a natural condition called S-compatibility, which is
the analog of Henselity in the multiplicative group context.

Part IV takes this approach one step further, and studies the Milnor K-theory
of valued and ordered fields F'. We recall that the Milnor K-group of F' of degree
7 is just the tensor product F* ®z---®z F'* (r times) modulo the simple relations
a1 ® -+ ®a, =0 whenever a; + a; = 1 for some i < j. Several important results
(or conjectures) in arithmetic geometry indicate that there should be some kind of
parallelism between Milnor’'s K-theory and Galois theory of fields. For instance,
the Bloch-Kato conjecture predicts a canonical isomorphism between KM (F') /n and
the Galois cohomology group H™(F, u®") (where r > 0 and n > 1 are integers with
char F' fn, and the cohomology is with respect to the r-times twisted cyclotomic
action); this has been proved in several important cases by A.S. Merkurjev, A.A.
Suslin, M. Rost, V. Voevodsky, and others (see §24.3). It is therefore not surprising
that large parts of the Galois theory of valued and ordered fields have analogs
in this natural framework of Milnor’s K-theory. These analogs will be presented
in Part IV. In some sense, this shift of viewpoint resembles the introduction of
the K-theoretic approach to higher class field theory, complementing the earlier
Galois-theoretic approach (see [FV, Appendix B] and [FK]).

Finally, there has been much interest lately in construction of non-trivial val-
uations on fields. Such constructions emerged in the context of ordered fields (in
particular, L. Brocker’s “trivialization of fans” theorem [Brl]), and later in an
elementary and explicit way by B. Jacob, R. Ware, J.K. Arason, R. Elman, and
Y.S. Hwang ([J1], [War2], [AEJ], [HwJ]). Such constructions became especially
important in recent years in connection with the so-called birational anabelian ge-
ometry. This line of research originated from ideas of A. Grothendieck ([G1], [G2])
as well as from works of J. Neukirch ([N1], [N2]). Here one wants to recover the
arithmetic structure of a field (if possible, up to an isomorphism) from its vari-
ous canonical Galois groups. The point is that usually the first step is to recover
enough valuations from their cohomological (or K-theoretic) “footprints”; see, e.g.,
[BoT], [Efl], [Ef7], [EfF], [NSW, Ch. XII], [P1], [P2], [P3], [Sp], [Sz] for more
details. In §11 we give a new presentation of the above-mentioned line of elemen-
tary constructions, based on the coarsening relation among valuations. While these
constructions were considered for some time to be somewhat mysterious, they fit
very naturally into the multiplicative group approach as discussed above, especially
when one uses the K-theoretic language. In §26 we use this language to prove the
main criterion for the existence of “optimal” valuations, as is required in the appli-
cations to the birational anabelian geometry. This is further related to the notion
of fans in the theory of ordered fields, thus closing this fruitful circle of ideas that
began with [Brl].

The prerequisites of this book are quite minimal. We assume a good algebraic
knowledge at a beginning graduate level, including of course familiarity with general
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field theory and Galois theory. The generalization of finite Galois theory to infinite
normal extensions is reviewed for the reader’s convenience in §13. Likewise we
develop the basic facts and formalisms of Milnor’s K-theory in §§23-24 in order
not to assume any prior knowledge in this area. On the other hand, we do assume
familiarity with the language of homological algebra (exact sequences, commutative
diagrams, direct and inverse limits, etc.). The presentation is mostly self-contained,
and only very few facts are mentioned without proofs: the “snake lemma” and
some basic properties of flatness in §1.1, the structure theory of finitely generated
modules over a principal ideal domain and the Nakayama lemma in §17.4, short
cohomological discussions in §22.2, §24.3 and Remark 25.1.7, and some facts from
local class field theory in §27.1.

Unlike most existing texts on valuation theory, we chose not to develop the
theory using commutative algebra machinery, but rather to use the machinery of
abelian groups. This simplifies the presentation in many respects. The required re-
sults about abelian groups (and in particular ordered abelian groups) are developed
in Part I of the book.

Needless to say, we have not pretended to fully describe here the vast research
work done on valued and ordered fields throughout the twentieth century and which
still goes on today. The choice of material reflects only the author’s personal taste
(and even more so, his limitations). More material can be found in the texts by
Ax [Ax], Bourbaki [Boul], Endler [En|, Jarden [Jr], Ribenboim ([Ril], [Ri3]),
Schilling [Schil, and Zariski and Samuel [ZS] on valuation theory, as well as those by
Knebusch and Scheiderer [KnS], Lam ([Lam1], [Lam2]), Prestel [Pr] and Scharlau
[Sch2] on ordered fields. Likewise, the reference list at the end of this monograph
surely covers only a small portion of the possible bibliography. Other and more
comprehensive lists of references on valuation theory can be found in [FV], [Ro],
and at the Valuation Theory internet site at http://math.usask.ca/fvk/Valth.html.
A comprehensive bibliography on the work done until 1980 on ordered fields is given
in [Lam1].

I thank Eli Shamovich as well as the anonymous referees for their very valuable
comments on previous versions of this manuscript.

This book was typeset using ApS-TEX, the TEX macro system of the American
Mathematical Society.

Be’er-Sheva 2005 LE.



Conventions

The image, kernel, and cokernel of a group homomorphism f: A — B will
be denoted as usual by Im(f), Ker(f), Coker(f), respectively. Thus Coker(f) =
B/Im(f). Given an abelian group A and a positive integer n, we denote the image,
kernel, and cokernel of the homomorphism A — A of multiplication by n by nA, , A,
and A/n, respectively.

For a prime number p we set Z, = limZ/p’. Likewise, we set 7 = lim Z/n,
where n ranges over all positive integers, and the inverse limit is with respect to
the divisibility relation.

Unless explicitly stated otherwise, all rings will be tacitly assumed to be com-
mutative with 1, and all modules two-sided (an important exception will be the
k-structures, discussed in Part IV, which are anti-commutative rings). The group
of invertible elements in a ring R will be denoted by R*. In particular, the mul-
tiplicative group F' \ {0} of a field F' will be denoted by F*. A grading on a ring
will always be by the nonnegative integers.

Given a subset A of a group, we denote the subgroup it generates by (A). The
notation B < A will mean that B is a subgroup of the group A.

Given a subsets A, B of a field F' and an element ¢ of I we set

A+xB={atb|lac A beB}, AB={ab |a€ A, be B}

—A={-a |a€ A}, cA={calac A},
etc.
We denote the fixed field of a group G of automorphisms of a field E by E®. If
a is an element of some field extension of E and is algebraic over E, then we denote
its irreducible polynomial over E by irr(a, F). An extension F' C E of fields will be
written as E//F, and its transcendence degree will be denoted by tr.deg(E/F).

xiii -



Contents

Introduction
Conventions
Part I. Abelian Groups

Chapter 1. Preliminaries on Abelian Groups
§1.1. General facts
§1.2. Divisible hulls
81.3. Rational ranks
§1.4. Characters

Chapter 2. Ordered Abelian Groups
§2.1. Basic properties and examples
§2.2. Ranks
§2.3. Cores
§2.4. Cofinality and infinitesimals
§2.5. Ordered abelian groups of rank 1
§2.6. Push-downs
§2.7. Well-ordered sets
§2.8. Formal power series
§2.9. Generalized rational functions

Part II. Valuations and Orderings

Chapter 3. Valuations
§3.1. Valuation rings
§3.2. Valuations
§3.3. Places
§3.4. Discrete valuations

Chapter 4. Examples of Valuations
84.1. Valuations from unique factorization domains
§4.2. Valuations on power series fields
§4.3. Gauss valuations

Chapter 5. Coarsenings of Valuations
§5.1. Coarser and finer
85.2. Quotients and compositions of valuations
§5.3. Coarsenings in the mixed characteristic case

ix

xiii

37
37
38
42
43

47
47
48
50

55
35
56
60



vi CONTENTS

Chapter 6. Orderings
86.1. Ordered fields
§6.2. Examples of orderings
§6.3. Archimedean orderings

Chapter 7. The Tree of Localities
§7.1. Localities
§7.2. Localities on residue fields
§7.3. The tree structure

Chapter 8. Topologies
§8.1. Basic properties
§8.2. Continuity of roots
§8.3. Bounded sets

Chapter 9. Complete Fields
§9.1. Metrics
§9.2. Examples
§9.3. Completions

Chapter 10. Approximation Theorems
§10.1. Approximation by independent localities
§10.2. Approximation by incomparable valuations
§10.3. Consequences

Chapter 11. Canonical Valuations
§11.1. Compatible localities
§11.2. S-cores
§11.3. Explicit constructions
§11.4. Existence of valuations

Chapter 12. Valuations of Mixed Characteristics
§12.1. Multiplicative representatives
§12.2. A-adic expansions
§12.3. p-perfect structures
§12.4. Rings of Witt vectors

§12.5. Mixed valuations under a finiteness assumption

Part ITI. Galois Theory
Chapter 13. Infinite Galois Theory

Chapter 14. Valuations in Field Extensions
§14.1. Chevalley’s theorem
§14.2. Valuations in algebraic extensions
§14.3. The Galois action

Chapter 15. Decomposition Groups
§15.1. Definition and basic properties
§15.2. Immediateness of decomposition fields
§15.3. Relatively Henselian fields

63
63
66
67

69
69
70
71

75
75
7
79

81
81
82
83

87
87
90
93

95
95
98
100
103

107
107
109
110
116
118

125

127
127
128
130

133
133
134
136



CONTENTS

Chapter 16. Ramification Theory
§16.1. Inertia groups
§16.2. Ramification groups

Chapter 17. The Fundamental Equality
§17.1. The fundamental inequality
§17.2. Ostrowski’s theorem
§17.3. Defectless fields
§17.4. Extensions of discrete valuations

Chapter 18. Hensel’s Lemma
§18.1. The main variants
§18.2. nth powers
§18.3. Example: complete valued fields
§18.4. Example: power series fields
§18.5. The Krasner-Ostrowski lemma,

Chapter 19. Real Closures
§19.1. Extensions of orderings
§19.2. Relative real closures
§19.3. Sturm'’s theorem
§19.4. Uniqueness of real closures

Chapter 20. Coarsening in Algebraic Extensions
§20.1. Extensions of localities
§20.2. Coarsening and Galois groups
§20.3. Local closedness and quotients
§20.4. Ramification pairings under coarsening

Chapter 21. Intersections of Decomposition Groups
§21.1. The case of independent valuations
§21.2. The case of incomparable valuations
§21.3. Transition properties for Henselity

Chapter 22. Sections
§22.1. Complements of inertia groups
§22.2. Complements of ramification groups

Part IV. K-Rings

Chapter 23. k-Structures
§23.1. Basic notions
§23.2. Constructions of k-structures
§23.3. Rigidity
§23.4. Demuskin s-structures

Chapter 24. Milnor K-Rings of Fields
§24.1. Definition and basic properties
§24.2. Comparison theorems
§24.3. Connections with Galois cohomology

Chapter 25. Milnor K-Rings and Orderings

vii

141
141
143

151
151
153
157
158

161
161
164
166
168
170

175
175
177
181
184

187
187
189
190
191

193
193
194
195

199
199
203

209
209
210
213
214

217
217
219
221

225



viii CONTENTS

§25.1. A K-theoretic characterization of orderings
§25.2. Cyclic quotients

Chapter 26. K-Rings and Valuations
§26.1. Valuations and extensions
§26.2. The Baer-Krull correspondence
§26.3. Totally rigid subgroups
§26.4. Sizes of multiplicative subgroups
§26.5. Hg and the K-ring
§26.6. Bounds in the totally rigid case
§26.7. Fans
§26.8. Examples of totally rigid subgroups

Chapter 27. K-Rings of Wild Valued Fields
§27.1. The discrete case
§27.2. A vanishing theorem
§27.3. The general case

Chapter 28. Decompositions of K-Rings
§28.1. The basic criterion
§28.2. Topological decompositions
§28.3. Local pairs
§28.4. Arithmetical decompositions

Chapter 29. Realization of k-Structures
§29.1. Basic constructions
§29.2. K-rings modulo preorderings of finite index
§29.3. k-structures of elementary type

Bibliography
Glossary of Notation

Index

225
228

231
231
234
235
236
238
240
242
244

247
247
248
250

253
253
256
257
259

263
263
265
267

269
275
281



Part I

ABELIAN GROUPS






By their definition, valuations are homomorphisms from the multiplicative
group of a field into ordered abelian groups (subject to the ultrametric inequal-
ity). It is therefore not surprising that many results about valuations reduce to
general facts about the category of ordered abelian groups, or even that of torsion-
free abelian groups. Of course, the latter categories have a simpler structure than
that of valued fields, and therefore allow simpler proofs. For this reason we de-
velop in this part of the book several themes from the theory of abelian groups
which will ultimately be applied in field-theoretic considerations, but do so in a
purely group-theoretic manner. For the general theory of abelian groups see [Fu]
or [Kap2].
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