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PREFACE

This text has evolved from lecture notes for my 1981-1985 spring
semester courses on the finite element method. The students were
mostly from the graduate-level engineering programs at North
Carolina State University. Consequently, the most important objec-
tives included (1) giving the student the ability to modify existing
finite element codes or to create new codes, (2) giving the student
some appreciation for the error estimates, and (3) giving a summary
and illustration of nonlinear algorithms. The present text has been
written so that readers can choose either the methods aspects or the
theoretical considerations as their main interests.

At the end of every chapter I have indicated additional readings,
and I have pointed to certain exercises that former students have
found helpful. These include some programming problems as well as
some theory problems. Readers will soon discover that these pro-
gramming problems can be very time consuming; consequently, I
recommend working with a partner. This helps the debugging process
and gives students an opportunity to talk about the course.

The programs in this text are not meant to be optimal or elegant,
but I hope they will be instructive. There are many optimized codes
that one should try to use in “production” work. Any computer
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center should have relevant manuals, such as J. Rice’s Numerical
Methods Software and Analysis: IMSL Reference Edition (McGraw-
Hill, 1983).

I would like to acknowledge the students, especially Maurizio
Benassi, who have made many useful remarks on the contents of this
book. Many thanks go to my friends who have listened to me
concerning the more mundane aspects of writing this text. Finally, let
me thank the staff of the mathematics department and, in particular,
Nancy Burke, who did the typing of the manuscript.

R. E. WHITE

Raleigh, North Carolina
August 1985



AN INTRODUCTION TO THE
FINITE ELEMENT METHOD
WITH APPLICATIONS TO

NONLINEAR PROBLEMS



CONTENTS

Introduction 1
1. The Energy and Weak Formulations 5
1.1. The Classical Formulation and the Finite
Difference Method 5
1.2. The Energy Formulation and Variational Finite
Element Method 8
1.3. The Weak Formulation and Galerkin Finite
Element Method 15
1.4. Comparison of the Three Formulations 18
1.5. Assembly by Nodes 21
1.6. Assembly by Elements 22
1.7. General Outline of FEM 25
1.8. Observations and References 29

Exercises 30

The Finite Element Method for

Two-Space-Variable Problems 37

2.1.

Triangular Elements and Linear Shape
Functions 37

vii



viii

2.2.
2.3.
2.4.
2.5.
2.6.

CONTENTS

The Energy Integral for a Simple Problem
The Construction of the Element Matrices
The Finite Element Program FEMI 53
A More General Problem 61
Observations and References 66
Exercises 67

43
47

Assembly by Nodes and a Reduced System Matrix

3.1.
3.2.

3.3.
34.

3.5.

Programming Assembly by Nodes 73
Comparisons of Assembly by Nodes and
by Elements 75

A Reduced System Matrix 75

Solution of the Algebraic Problem

by Iteration 77

Observations and References 79
Exercises 79

Shape Functions

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

Linear Shape Functions on
Tetrahedral Elements 81
Quadratic Shape Functions on
Interval Elements 85

Quadratic Shape Functions on
Triangular Elements 90

Bilinear Shape Functions on
Rectangular Elements 100
Complete Cubic Shape Functions
on Triangular Elements 105
Observations and References 108
Exercises 108

Error Estimates and Existence

5.1.
5.2
5.3.

Definitions of a(u, ), Hy(0,L) 112
Linear Spaces of Real-Valued Functions
Properties of a(u,y) 120

118

73

81

111



CONTENTS ix

5.4. Interpolation, Completeness, and Continuity
of Functions in H})(0, L) 123

5.5. [Equivalence of Classical, Energy, and
Weak Formulations 130

5.6. Error Estimates 131

5.7. Existence 133

5.8. Observations and References 137
Exercises 138

Time-Dependent Problems 143

6.1. A Sample Problem 143
6.2. Finite Difference Schemes 145
6.3. Stability and the Lax Equivalence Theorem 150
6.4. FEM for Implicit Time Discretization 164
6.5. FEM for One Space Variable 167
6.6. FEM for Two Space Variables 168
6.7. Observations and References 171
Exercises 172

Numerical Solution of Nonlinear Algebraic Systems 177

7.1. Motivating Examples 177
7.2. One-Variable Methods 182
7.3. Newton’s Method for N Unknowns 194
7.4. Gauss—Seidel Variations of Newton’s Method 204
7.5. Quasi-Newton Method (Broyden) 209
7.6. Continuation (Homotopy) Method 218
7.7. Nonlinear Gauss—-Seidel-SOR Method 224
7.8. Observations and References 230
Exercises 230

Applications to Nonlinear Partial Differential Equations 233

8.1. Comparison of Linear and Nonlinear
FEM Problems 233
8.2. Application to Nonlinear Heat Conduction 238



8.3.
8.4.

8.5.

8.6.
8.7.

CONTENTS

Burger’s Equation 249

Incompressible Viscous Fluid Flow— Explicit

Method 254

Incompressible Viscous Fluid Flow —Implicit

Method 265

Stefan Problem 269
Observations and References 284
Exercises 284

9. Variational Inequalities

9.1,

9.2.
0.3.
9.4.
9.5.
9.6.

Obstacle Problem on a String—a
Motivating Example 288

Elliptic Variational Inequalities 293
The Discrete Problem and an Algorithm
Fluid Flow in a Porous Medium 299
Parabolic Variational Inequalities 306
Observations and References 311
Exercises 311

Appendixes. Some Nonlinear Problems and

A.1l. FEMI Written In Pascal: Steady-State
Heat Conduction 313
A.2. Newton’s Method: Heat Flow in a
Resistance Transducer 323
A.3. Nonlinear Gauss—Seidel Method: Solidification
of Water in a Channel—the Stefan Problem 330
A.4. Variational Inequalities: Steady-State Flow
in a Porous Medium—an Axisymmetric
Water Filter 341
References

Index

Their Computer Programs

295

287

313

349
351



INTRODUCTION

In this text we describe the finite element method with an emphasis
on approximating solutions to second-order linear and nonlinear
partial differential equations. The advantages of the finite element
method over the finite difference method are (1) usually a more
“accurate” approximation is obtained and (2) irregular shaped do-
mains may be considered in the context of one program. The
following examples illustrate the latter point.

Example 1. Ideal fluid flow around a pipe (see Figure 1). By the
expected symmetry and the fact that the stream lines change most
near the pipe, we may be interested in the nodes as distributed in

Figure 1
1
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A¢ =0on Q
¢, = velocity in x direction
— ¢, = velocity in y direction

Figure 2

Figure 2. Note € is the union of the triangles and approximates £,
the upper left region of fluid flow, more accurately than a union of
rectangles with a similar number of nodes. The triangular regions are

called elements for 9.

Example 2.

Steady-state heat flow. For example, consider an in-

sulated steam pipe as illustrated in Figure 3. By using the symmetry
we may reduce the number of nodes by { (see Figure 4). The same

u =212

Steam
pipe

Insulation Figure 3

du _ _
i = h(70 — u)

- v+ Kvu=0
K = thermal conductivity

I

h = convective coefficient
u

Figure 4

steady state temperature
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finite element program can be used to approximate the solution to
both examples. One must input different data for both examples.
Also, time-dependent problems may be considered.

Two main objectives of this text are (1) to present enough material
so that readers can write their own finite element programs or alter
existing codes and (2) to present some techniques for solving nonlin-
ear problems. In the latter case we shall consider incompressible
viscous fluid flow problems and nonlinear heat transfer problems
such as the Stefan problem.






1

THE ENERGY AND
WEAK FORMULATIONS

In order to introduce the finite element method (FEM), we consider
a one-variable model problem. In the first three sections we illustrate
the three equivalent formulations of this model problem. These are
the classical, energy, and weak formulations. In Section 1.4 we
discuss how they are related to one another. Sections 1.5 and 1.6
contain a description of two methods of assembling the system
matrix, namely, assembly by nodes and assembly by elements. Sec-
tion 1.7 contains a general outline for the finite element method.

1.1 THE CLASSICAL FORMULATION AND THE
FINITE DIFFERENCE METHOD

The model problem that we shall use in this chapter is a mass subject
to gravitational force and another force that is proportional to the
displacement and whose positions at time ¢t = 0 and ¢ = L are given.
The classical formulation uses Newton’s law and has the form

—mp(t) = mg — ky(t), (1.1.1)
y(0) = a, (1.1.2)
y(L) = b, (1.1.3)

5



6 THE ENERGY AND WEAK FORMULATIONS

where m is the mass, k& the proportionality constant, and g the
acceleration due to gravity. ky(r) — mg represents the external force.

There are other physical problems that have the same form as
(1.1.1)—(1.1.3). For example, the steady-state deflection of an ideal
string has the form

—(Tu(x)), =1,

where T is the tension, u the displacement, and f the loading
pressure. In this case the independent variable is a space variable x.
Another example is steady-state heat conduction. A linearized ver-
sion of the problem in exercise 1-25 has the form of (1.1.1).

Definition. We shall say that y(r) is a classical solution of the
continuum problem (1.1.1)—(1.1.3) if and only if y € C?[0, L] and
equations (1.1.1)—(1.1.3) are satisfied. (C?[0, L] is the set of functions
on [0, L] that have two continuous derivatives.)

Of course, if m, k > 0 are constants, then the classical solution of
(1.1.1)-(1.1.3) is easy to find. If m, k are dependent on ¢, y or if
equation (1.1.1) is more complicated, then one may not be able to
find an explicit formula for the classical solution. One way to handle
the more complicated problems is to approximate the continuum
problem by a discrete model. The following is one such model called
the finite difference method (FDM). Make the following approxima-
tions of y and j:

v(t) =y, wherey =y(iAr),At=L/N =h

and

- ~vl+ B -VI .yl B -“l* 1
-}'(’)_’( T I)Z'

Then equations (1.1.1)—(1.1.3) are approximated by

=2y, +
— 1 h)z‘ Xi=1 mg — ky,, l1<i<N-1 (1.14)

Yo = a, (1.1.5)
yn=0b. (1.1.6)
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For m = k = 1, g = 32, equation (1.1.4) may be written in the form

1 2 1
_Zyi*l+(_}_l_+h)y'_z)/'+l_32h' (117)

Consequently, we have N — 1 unknowns and N — 1 equations. For
N = 4, these may be written in matrix form

1 0 0 0 0\ (¥ a
-+ % B T O Y B P
0 _Tl % + h _}—11 0 yo| = |32h
0 0 :h—l % +h _Tl ¥ 32h
0 0 0 0 1)y b

(1.1.8)

Definition. The discrete formulation of (1.1.1)-(1.1.3) given by
(1.1.4)—(1.1.6) or in matrix form (for N = 4) by (1.1.8) is called the
Sfinite difference model of the classical formulation. The matrix in
(1.1.8) is often called the system matrix.

Figure 1.1.1



