Algorithms
On Graphs

H.T. Lau

TAB Professional and Reference Books

Division of TAB BOOKS Inc.
Blue Ridge Summit, PA

Algorithms
On Graphs

H.T. Lau

TAB Professional and Reference Books

Division of TAB BOOKS Inc.
Blue Ridge Summit, PA

A Petrocelli book

FIRST EDITION
FIRST PRINTING

Copyright © 1989 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. The publisher takes no responsibility
for the use of any of the materials or methods described in this book, or for
the products thereof.

Library of Congress Cataloging in Publication Data

Lau, H. T. (Hang Tong), 1952—
Algorithms on graphs / by H.T. Lau.
p. cm.

ISBN 0-8306-3429-0
1. Graph theory—Data processing. |. Title.
QA166.L38 1989

511'.5—dc20 89-36595
CiP

TAB BOOKS Inc. offers software for sale. For information and a catalog, please
contact TAB Software Department, Blue Ridge Summit, PA 17294-0850.

Questions regarding the content of this book
should be addressed to:

Reader Inquiry Branch
TAB BOOKS Inc.
Blue Ridge Summit, PA 17294-0214

NOTE TO THE READER

Standard graph-theoretic terminology can be found in texts
such as F. Harary, Graph Theory, Addison-Wesley Pub-
lishing Company, 1969; and J.A. Bondy and U.S.R. Murty,
Graph Theory with Applications, Macmillan Press Ltd.,
1976.

The background on graph algorithms and applications

can be supplemented by books such as:

A.V. Aho, J.E. Hopcroft and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-
Wesley Publishing Company, 1974.

V. Chachra, P.M. Ghare and J.M. Moore, Applications
of Graph Theory Algorithms, Elsevier North-Holland,
Inc., 1979.

N. Christofides, Graph Theory, An Algorithmic Ap-
proach, Academic Press, London, 1975.

S. Even, Graph Algorithms, Computer Science Press,
1979.

A. Gibbons, Algorithmic Graph Theory, Cambridge Uni-
versity Press, 1985.

M. Gondran and M. Minoux, Graphs and Algorithms,
Wiley-Interscience, 1984.

K. Mehlhorn, Graph Algorithms and NP-Completeness,
Springer-Verlag, Inc., 1984.

E. Minieka, Optimization Algorithms for Networks and
Graphs, Marcel Dekker, Inc., 1978.

INTRODUCTION

For convenience, the definitions of most graph-theoretic
terms in this book appear in Appendix I. Every chapter is
self-contained and largely independent. Each topic is pre-
sented in the same format under five subheadings:

A. Problem description—a general description of the
problem.

B. Method—an outline of the solution procedure.

C. Subroutine parameters—a description of all param-
eters of the subroutine that implements the method
described in B.

D. Test example—a simple example illustrating the
usage of the subroutine.

E. Program listing—the complete listing of the code.

In general, the solution procedures will be only briefly out-
lined. References given at the end of this book should be
consulted for all details.

Throughout this book, it is assumed that a graph of n
nodes and m edges has its nodes numbered from 1 to n. In
the implementation of each solution procedure, one of two
graph representations is used: the matrix form or the for-
ward star form. The square matrix representation is mainly
used to store the edge distance for every pair of nodes in a
complete graph, resulting in an n? storage requirement. The
forward star representation lists each edge by its starting
node, ending node, and its length. Furthermore, the edges in

v

the graph are ordered by the starting node so that all edges
starting at the same node appear together, resulting in only
an n + 2m storage requirement. In this way, if one knows
whi. h is the first edge starting at each node i, then one can
determine the last edge starting from node i as the edge
immediately preceding the first edge starting at node i + 1.
A list of all subroutines in this book is summarized in
Appendix II. The programs are written in FORTRAN 77.
Communication to each subroutine is made solely through
the parameter list. The test runs were all performed on the
Amdahl 5870 using the IBM VS FORTRAN Compiler.

PREFACE

The many applications of graph theory constantly draw the
attention of researchers, especially in the search for efficient
algorithms. Although many well-developed procedures have
appeared in books and journals, ready-to-use computer codes
are generally not easily accessible. This book attempts to
provide such a source. It is not meant to be a collection of
the most efficient algorithms; the choice of the topics and
their solution procedures is purely based on the author’s
interests. The main objective of this book is to provide com-
puter programs that can be used with minimal effort for
problem-solving without much concern for their underlying
methodology and implementation.

H.T. Lau
Ile des Soeurs
Quebec, Canada

vi

CONTENTS

Sy U

Note to the Reader
Introduction
Preface

Connectivity

1-1 Maximum Connectivity

1-2 Edge-Connectivity

1-3 Fundamental Set of Cycles

1-4 Cut Nodes and Bridges

1-5 Strongly Connected Components
1-6 Minimal Equivalent Graph

1-7 Maximal Independent Sets

Shortest Paths

2-1 One-Pair Shortest Path

2-2 One-To-All Shortest Path Lengths

2-3 One-To-All Shortest Path Tree

2-4 All-Pairs Shortest Paths

2-5 k Shortest Paths

2-6 k Shortest Paths Without Repeated Nodes

Traversability
3-1 Euler Circuit
3-2 Hamiltonian Cycle

Node Coloring
4-1 Chromatic Number
4-2 Chromatic Polynomial

Minimum Spanning Tree
Maximum Cardinality Matching

Planarity Testing
Appendix | Graph Terminology
Appendix Il List of Subroutines
Bibliographic Notes

Index

111

142
142
148

157
157
167

178
188

195
223
225
227

231

1

CONNECTIVITY

Maximum Connectivity

A. Problem description

Let n and % be two given positive integers. The problem is
to construct a k-connected graph G(k, n) on n nodes with as
few edges as possible. Observe that for 2 = 1, the graph
G(1, n) is a spanning tree. Consequently, it is assumed that
k = 2. Moreover, it is known that G(k, n) has exactly
[(n*k)/2] edges, where [x]is the smallest integer greater than
or equal to x.

B. Method
Label the nodes of the graph by the integers0,1,2,...,n — 1.

CASE1l. kiseven.Letk = 2¢

The graph G(2¢, n) is constructed as follows. First, draw
an n-gon, that is, add the edges

0,1,1,2,,3),...,(n —2,n—-1),(n — 1,0),
then join nodes i and j if and only if

li — j|=p (mod n), where2<p <t
CASE2. kisodd, niseven. Letk = 2¢ + 1.

The graph G(2¢ + 1, n) is constructed by first drawing
G(2t, n), and then joining node i to node

i+ (n/2),for 0 =i<n/2.
CASE3. kisodd, nisodd. Let 2 = 2¢ + 1.

The graph G(2¢t + 1, n) is constructed by first drawing
G(2t, n), and then join

node 0 to node (n — 1)/2,
node 0 to node (n + 1)/2,
nodeitonodei + (n + 1)/2,forl=i<(n — 1)/2.

C. Subroutine MAKEG parameters
Input:
N Number of nodes.

K The required graph is K-connected, K = 2.

NK2 The smallest integer greater than or equal to
(N*K)/2.

Output:

INODE, INODEC(), JNODE(:) are the end nodes of
JNODE the ith edge in the K-connected graph,
i=12,...,NK2.

D. Test example

Construct a 5-connected graph on eight nodes with as few
edges as possible.

2

E. Program listing

MAIN PROGRAM

INTEGER INODE(20),JNODE(20)
N=38
K=5
NK2 = 20
CALL MAKEG (N,K,NK2,INODE,JNODE)
WRITE(*,10) N, K, NK2
10 FORMAT(' NUMBER OF NODES =',1I3,’",/,

+ 3X,12,'-CONNECTED,/
+ ' NUMBER OF EDGES =",13//
+ " LIST OF EDGES:'/)

WRITE(*,20) INODE(),I=1,NK2)
20 FORMAT(1X,25I3)

WRITE(*,20) (JNODE(),I=1,NK2)

STOP

END

OUTPUT RESULTS

NUMBER OF NODES = 8, 5-CONNECTED,
NUMBER OF EDGES = 20
LIST OF EDGES:
12345678112234
23456781374856
SUBROUTINE MAKEG
+ JNODE)

561234
785678
N,K

(N,K,NK2,INODE,

Construct a K-connected graph of N nodes with
the least number of edges

aaaaQ

INTEGER INODE(NK2),JNODE(NK2)
LOGICAL EVENK,EVENN,JOIN

Make an N-gon

QaaaQ

NK2 =0

Q aaa

10

20

30
40

+

N1=N-1
DO10I=1,N1
NK2 = NK2 + 1
INODE(NK2) =1
JNODE(NK2) =1 + 1
CONTINUE
NK2 = NK2 + 1
INODE(NK2) = N
JNODE(NK2) = 1
IF (K .EQ. 2) RETURN

EVENK = .TRUE.
KHALF = K/2
IF (K .NE. 2*KHALF) EVENK = .FALSE.

DO40I=1,N1
n=I1+1
DO30J =11,N
JOIN = .FALSE.
JI=dJd-1
DO 20 L = 2, KHALF
IF (MOD(L,N) .EQ. JI) .OR.
(JI + L .EQ. N)) JOIN = .TRUE.
CONTINUE
IF JOIN) THEN
NK2 = NK2 + 1
INODE(NK2) =1
JNODE(NK2) = J
ENDIF
CONTINUE
CONTINUE

If K is even then finish
IF (EVENK) RETURN
EVENN = .TRUE.

NHALF = N/2
IF (N .NE. 2*XNHALF) EVENN = .FALSE.

IF (EVENN) THEN

K is odd, N is even

aaQa @

DO50I = 1, NHALF
NK2 = NK2 +1
INODE(NK2) = I
JNODE(NK2) = I + NHALF
50 CONTINUE
ELSE

K is odd, N is odd

aaa

NPP=(N+1)/2
NMM = (N-1)/2
DO 601 = 2, NMM
NK2 = NK2 + 1
INODE(NK2) =1
JNODE(NK2) = I + NPP
60 CONTINUE
NK2 = NK2 + 1
INODE(NK2) = 1
JNODE(NK2) = NMM + 1
NK2 = NK2 + 1
INODE(NK2) = 1
JNODE(NK2) = NPP + 1
ENDIF

RETURN
END

1-2 Edge-Connectivity

A. Problem description

The problem is to find the edge-connectivity of a given con-
nected undirected graph.

B. Method

As a preliminary, a network is defined to be a directed graph
G in which each edge (i, j) is associated with a nonnegative
number c(i, j) called the capacity of the edge. Let the number
f(i, j) be the flow from node i to node j. A flow in the network
is feasible if f(i, j) does not exceed c(i, j) for each edge (i, j) in
G, and the sum of all flows incoming to node i is equal to the
sum of all flows outgoing from node j.

Let s and ¢ be some specified nodes, called the source and
sink, respectively. The maximum network flow problem is to
find a flow in the network from s to ¢ such that the amount
of the flow into ¢ is maximum.

A cut is a subset S of the nodes of G with the capacity
equal to:

2 i, j)

ieS

Jj&S
The well-known max-flow min-cut theorem states that the
maximum flow is equal to the minimal cut in a network.
The subroutine NFLOW below finds a maximum flow and a
minimal cut set in a given network with specified source
and sink nodes.

With the background of maximum network flow, the
method of finding the edge-connectivity of an undirected
graph is quite straightforward.

Denote the nodes of the input connected, undirected
graph Gby 1, 2, ..., n. Forj = 2 to n do the following:
Take node 1 as the souree, node j as the sink in G, assign a
unit capacity to all edges in both directions, and find the
value of a maximum flow g(j) in the resulting network. The
edge-connectivity is equal to the minimum of all g(j), for
J=23,...,n

The subroutine EDGECN below finds the edge-connec-
tivity of a given undirected graph with the help of subroutine
NFLOW.

The maximum network flow algorithm requires O(n®)

operations. The edge-connectivity of a graph will therefore
be found in O(n*) operations.

C. Subroutine EDGECN parameters
Input:

N Number of nodes.
M Number of edges.
M4 Equal to 4*M.

INODE, Each is an integer vector of length M,
JNODE INODE(?), JNODE(:) are the end nodes of
the ith edge in the connected undirected

graph.
Output:
KCONCT The edge-connectivity of the graph.

Working storages:
For the description of the following working arrays, see
the parameters of subroutine NFLOW.
IEDGE Integer vector of length M4.
JEDGE Integer vector of length M4.
CAPAC Integer vector of length M4.
MINCUT Integer vector of length N.
FLOW Integer vector of length M4.
NODFLO Integer vector of length N.
POINT Integer vector of length N.
IMAP Integer vector of length N.
JMAP Integer vector of length N.

Subroutine NFLOW parameters

Let G be a network of E edges.
Input:

N Number of nodes.

M Equal to 2*E.

INODE, Each is an integer vector of length M; an

JNODE edge in G directed from node u to node v will
be represented by two directed edges (u, v)
and (v, u), where

INODE@G) = u, JNODEQ@) = v,
INODE(j) = u, JNODE()) = v,
for some i and j. On output, the edges will
be sorted lexicographically.

CAPAC Integer vector of length M; CAPAC() is the
edge capacity of edge (u, v) in G, and the
artificially created edge (v, u) will have an
edge capacity CAPAC(j) equal to zero.

ISORCE, A maximum flow is required from node
ISINK ISORCE to node ISINK in the network.
Output:

MINCUT Integer vector of length N; MINCUT() = 1
if node i is in the minimal cut set;
otherwise, it is equal to zero.

FLOW Integer vector of length M; FLOW() is the
amount of flow on edge i.

NODFLO Integer vector of length N; NODFLO() is
the amount of flow through node .
Working storages:
POINT Integer vector of length N; POINT(;) is the
first edge from node i.
IMAP Integer vector of length N; pointer array.
JMAP Integer vector of length N; pointer array.

REMARK. As an example for using NFLOW, we want to find
the maximum flow from node 3 to node 2 in the following
network of E = 5 edges.

The numbers on the edges represent the edge capacity.

The input data to subroutine NFLOW might be:

N=4
M=10
INODE.: 4
JNODE: 2
CAPAC: 8
ISORCE =
ISINK = 2

31123
13214
60907

o RN
o w B
[S I N
(=T

2

4
0
3

Notice that the edges can be arranged in an arbitrary order.

D. Test example

Find the edge-connectivity of the following graph with nine
nodes and 17 edges.

E. Program listing

MAIN PROGRAM

INTEGER INODE(17),JNODE(17),IEDGE(68),
+ JEDGE(68),CAPAC(68),MINCUT(9),
+ FLOW(68),NODFLO(9),POINT(9),

+ IMAP(9),JMAP(9)

DATA INODE/ 6,2,3,6,7,1,4,7,3,4,9,6,5,4,2,9,4/,

+ JNODE / 8,5,1,3,2,8,3,5,8,1,2,1,9,8,6,7,2/

N=9

M =17

M4 = 4*M

CALL EDGECN(N,M,M4,INODE JNODE,
+ KCONCT,IEDGE JEDGE,CAPAC,
+ MINCUT,FLOW,NODFLO,
+ POINT,IMAP,JMAP)

10

