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Preface

As the the title suggests, the goal of this book is to give the reader a taste of
the “unreasonable effectiveness” of Morse theory. The main idea behind this
technique can be easily visualized.

Suppose M is a smooth, compact manifold, which for simplicity we as-
sume is embedded in a Euclidean space E. We would like to understand basic
topological invariants of M such as its homology, and we attempt a “slicing”
technique.

We fix a unit vector u in E and we start slicing M with the family of
hyperplanes perpendicular to u. Such a hyperplane will in general intersect
M along a submanifold (slice). The manifold can be recovered by continuously
stacking the slices on top of each other in the same order as they were cut out
of M.

Think of the collection of slices as a deck of cards of various shapes. If we
let these slices continuously pile up in the order they were produced, we notice
an increasing stack of slices. As this stack grows, we observe that there are
moments of time when its shape suffers a qualitative change. Morse theory
is about extracting quantifiable information by studying the evolution of the
shape of this growing stack of slices.

From a mathematical point of view we have a smooth function

h: M —R, hiz)= (u,x).
The above slices are the level sets of h,
{@ e M; h(x)=const},
and the growing stack is the time dependent sublevel set
{w e M; h(x)<t}, teR

The moments of time when the pile changes its shape are called the critical
values of h and correspond to moments of time ¢ when the corresponding
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hyperplane {{u, z) = t} intersects M tangentially. Morse theory explains how
to describe the shape change in terms of local invariants of h.

A related slicing technique was employed in the study of the topology of
algebraic manifolds called the Picard-Lefschetz theory. This theory is back in
fashion due mainly to Donaldson’s pioneering work on symplectic Lefschetz
pencils.

The present book is divided into three conceptually distinct parts. In the
first part we lay the foundations of Morse theory (over the reals). The second
part consists of applications of Morse theory over the reals, while the last
part describes the basics and some applications of complex Morse theory,
a.k.a. Picard—Lefschetz theory. Here is a more detailed presentation of the
contents.

In chapter 1 we introduce the basic notions of the theory and we describe
the main properties of Morse functions: their rigid local structure (Morse
lemma) and their abundance (Morse functions are generic). To aid the reader
we have sprinkled the presentation with many examples and figures. One
recurring simple example we use as a testing ground is that of a natural
Morse function arising in the design of robot arms.

Chapter 2 is the technical core of the book. Here we prove the fundamental
facts of Morse theory: crossing a critical level corresponds to attaching a han-
dle and Morse inequalities. Inescapably, our approach was greatly influenced
by classical sources on this subject, more precisely Milnor’s beautiful books
on Morse theory and h-cobordism [M3, M4].

The operation of handle addition is much more subtle than it first appears,
and since it is the fundamental device for manifold (re)construction, we de-
voted an entire section to this operation and its relationship to cobordism and
surgery. In particular, we discuss in some detail the topological effects of the
operation of surgery on knots in $? and illustrate this in the case of the trefoil
knot.

In chapter 2 we also discuss in some detail dynamical aspects of Morse the-
ory. More precisely, we present the techniques of S. Smale about modifying
a Morse function so that it is self-indexing and its stable/unstable manifolds
intersect transversally. This allows us to give a very simple description of an
isomorphism between the singular homology of a compact smooth manifold
and the (finite dimensional) Morse-Floer homology determined by a Morse
function, that is, the homology of a complex whose chains are formal linear
combinations of critical points and whose boundary is described by the con-
necting trajectories of the gradient flow. We have also included a brief section
on Morse—Bott theory, since it comes in handy in many concrete situations.

We conclude this chapter with a section of a slightly different flavor.
Whereas Morse theory tries to extract topological information from infor-
mation about critical points of a function, min-max theory tries to achieve
the opposite goal, namely to transform topological knowledge into informa-
tion about the critical points of a function. While on this topic, we did not
want to avoid discussing the Lusternik—Schnirelmann category of a space.
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Chapter 3 is devoted entirely to applications of Morse theory, and in writ-
ing it we were guided by the principle, few but juicy. We present relatively
few examples, but we use them as pretexts for wandering in many parts of
mathematics that are still active areas of research. More precisely, we start
by presenting two classical applications to the cohomology of Grassmannians
and the topology of Stein manifolds.

We use the Grassmannians as a pretext to discuss at length the Morse
theory of moment maps of Hamiltonian torus actions. We prove that these
moment maps are Morse-Bott functions. We then proceed to give a complete
presentation of the equivariant localization theorem of Atiyah, Borel, and
Bott (for S'-actions only), and we use this theorem to prove a result of P.
Conner [Co]: the sum of the Betti numbers of a compact, oriented smooth
manifold is greater than the sum of the Betti numbers of the fixed point set of
any smooth S'-action. Conner’s theorem implies among other things that the
moment maps of Hamiltonian torus actions are perfect Morse-Bott function.
The (complex) Grassmannians are coadjoint orbits of unitary groups, and as
such they are equipped with many Hamiltonian torus actions leading to many
choices of perfect Morse functions on Grassmannians.

We used the application to the topology of Stein manifolds as a pretext for
the last chapter of the book on Picard-Lefschetz theory. The technique is sim-
ilar. Given a complex submanifold M of a complex projective space, we start
slicing it using a (complex) 1-dimensional family of projective hyperplanes.
Most slices are smooth hypersurfaces of M, but a few of them are have mild
singularities (nodes). Such a slicing can be encoded by a holomorphic Morse
map M — CP'.

There is one significant difference between the real and the complex sit-
uations. In the real case, the set of regular values is disconnected, while in
the complex case this set is connected, since it is a punctured sphere. In the
complex case we study not what happens as we cross a critical value, but
what happens when we go once around it. This is the content of the Picard
Lefschetz theorem.

We give complete proofs of the local and global Picard Lefschetz formulee
and we describe basic applications of these results to the topology of algebraic
manifolds.

We conclude the book with a chapter containing a few exercises and so-
lutions to (some of) them. Many of them are quite challenging and contain
additional interesting information we did not include in the main body, since
it have been distracting. However, we strongly recommend to the reader to
try solving as many of them as possible, since this is the most efficient way of
grasping the subtleties of the concepts discussed in the book. The complete
solutions of these more challenging problems are contained in the last section
of the book.

Penetrating the inherently eclectic subject of Morse theory requires quite
a varied background. The present book is addressed to a reader familiar with
the basics of algebraic topology (fundamental group, singular (co)homology,
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Poincaré duality, e.g., Chapters 0-3 of [Ha]) and the basics of differential
geometry (vector fields and their flows, Lie and exterior derivative, integration
on manifolds, basics of Lie groups and Riemannian geometry, e.g., Chapters
1-4 in [Ni]). In a very limited number of places we had to use less familiar
technical facts, but we believe that the logic of the main arguments is not
obscured by their presence.

Acknowledgments. This book grew out of notes I wrote for a one-semester
graduate course in topology at the University of Notre Dame in the fall of
2005. I want to thank the attending students, Eduard Balreira, Daniel Cibo-
taru, Stacy Hoehn, Sasha Lyapina, for their comments questions and sugges-
tions, which played an important role in smoothing out many rough patches
in presentation. While working on these notes I had many enlightening con-
versations on Morse theory with my colleague Richard Hind. I want to thank
him for calmly tolerating my frequent incursions into his office, and especially
for the several of his comments and examples I have incorporated in the book.

Last, but not the least, I want thank my wife. Her support allowed me
to ignore the “publish or perish” pressure of these fast times, and I could
ruminate on the ideas in this book with joyous abandonment.

This work was partially supported by NSF grant DMS-0303601.



Notations and Conventions

For every set A we denote by #A its cardinality.

For K = R,C, > 0 and M a smooth manifold we denote by Kj,; the
trivial vector bundle K" x M — M.

i := v/—1. Re denotes the real part, and Im denotes the imaginary part.
For every smooth manifold M we denote by T'M the tangent bundle, by
T, M the tangent space to M at x € M and by T M the cotangent space
at @.

e For every smooth manifold and any smooth submanifold S — M we
denote by TsM the normal bundle of S in M defined as the quotient
TsM := (TM)|s/TS. The conormal bundle of S in M is the bundle
TEM — S defined as the kernel of the restriction map (I*M)|s — TS,
Vect(M) denotes the space of smooth vector fields on M.

2P(M) denotes the space of smooth p-forms on M, while 27,

(M) the
space of compactly supported smooth p-forms.

e If F: M — N is a smooth map between smooth manifolds we will denote
its differential by DF or F,. DF, will denote the differential of F' at x € M
which is a linear map DFy : T,.M — T,N. F* : QP(N) — £2P(M) is the
pullback by F.

:= transverse intersection.

Ll := disjoint union.

For every X,Y € Vect(M) we denote by Ly the Lie derivative along X and
by [X, Y] the Lie bracket [X,Y] = LxY.ix or X | denotes the contraction
by X.

e We will orient the manifolds with boundary using the outer-normal -first
convention.

e The total space of a fiber bundle will be oriented using the fiber-first
convention.

e so(n) denotes the Lie algebra of SO(n), u(n) denotes the Lie algebra of
U(n) ete.

e Diag(cy, - ,¢,) denotes the diagonal n x n matrix with entries ¢y, ..., cn.
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1

Morse Functions

In this first chapter we introduce the reader to the main characters of our story,
namely the Morse functions, and we describe the properties which make them
so useful. We describe their very special local structure (Morse lemma) and
then we show that there are plenty of them around.

1.1 The Local Structure of Morse Functions

Suppose F: M — N is a smooth (i.e., C°) map between smooth manifolds.
The differential of F defines for every @ € M a linear map

DF, : Jw,]\[ — TF(I)N'
Definition 1.1. (a) The point 2 € M s called a critical point of I if
rank DF, < min(dim M, dim N).

A point x € M is called a regular point of F' if it is not a critical point. The
collection of all critical points of F is called the critical set of F' and is denoted
by Crp.

(b) The point y € N is called a critical value of I if the fiber F=(y) contains
a critical point of F. A point y € N is called a regular value of F' if it is
not a critical value. The collection of all critical values of F is called the
discriminant set of F and is denoted by Ap.

(¢) A subset S C N is said to be negligible if for every smooth open embedding
& :R" — N, n=dimN, the preimage ®~1(S) has Lebesque measure zero in
R™. O

Theorem 1.2 (Morse—Sard—Federer). Suppose F' : M — N s a smooth
function. Then the Hausdorff dimension of the discriminant set Ar is at most
N —1. In particular, the discriminant set is negligible in N. Moreover, if (M)
has nonempty interior, then the set of reqular values is dense in F(M). O
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For a proof we refer to Federer [Fed, Theorem 3.4.3] or Milnor [M2].

Remark 1.5. (a) If M and N are real analytic manifolds and F' is a proper
real analytic map then we can be more precise. The discriminant set is a
locally finite union of real analytic submanifolds of N of dimensions less than
dim N. Exercise 5.1 may perhaps explain why the set of critical values is called
discriminant.

(b) The range of a smooth map F': M — N may have empty interior. For
example, the range of the map F : R? — R?, F(x,y,2) = (z,0), is the z-axis
of the Cartesian plane R?. The discriminant set of this map coincides with
the range. a

Example 1.4. Suppose f : M — R is a smooth function. Then zg € M is a
critical point of f if and only if df [,,= 0 € Ty M.

Suppose M is embedded in a Euclidean space F and f : E — R is a
smooth function. Denote by fa; the restriction of f to M. A point g € M is

a critical point of fas if
(df,v) =0, Yve T, M.

This happens if either xg is a critical point of f, or dfy, # 0 and the tangent
space to M at z( is contained in the tangent space at xg of the level set
{f = f(zo)}. If f happens to be a nonzero linear function, then all its level
sets are hyperplanes perpendicular to a fixed vector u, and zo € M is a critical
point of fys if and only if u L T, M, i.e., the hyperplane determined by f
and passing through z¢ is tangent to M.

LY A /
AV
——
N

>
>

M

Fig. 1.1. The height function on a smooth curve in the plane.

In Figure 1.1 we have depicted a smooth curve M C R2. The points
A, B, C are critical points of the linear function f(z,y) = y. The level sets of
this function are horizontal lines and the critical points of its restriction to M
are the points where the tangent space to the curve is horizontal. The points
a, b, c on the vertical axis are critical values, while r is a regular value. O
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Example 1.5 (Robot arms: critical configurations). We begin in this
example the study of the critical points of a Ismooth function which arises in
the design of robot arms. We will discuss only a special case of the problem
when the motion of the arm is constrained to a plane. For slightly different
presentations we refer to the papers [Hau, KM, SV], which served as our
sources of inspiration. The paper [Hau] discusses the most general version of
this problem, when the motion of the arm is not necessarily constrained to a
plane.

Fix positive real numbers ry,...,r, > 0, n > 2. A (planar) robot arm
(or linkage) with n segments is a continuous curve in the Euclidean plane
consisting of n line segments

s1=[Jotils 5 =[Pl ers B =]lp-rtn)

of lengths
dist (Jz~ ']ifl) =Ty, = 1,2, oo wy Tl

We will refer to the vertices J; as the joints of the robot arm. We assume
that Jy is fixed at the origin of the plane, and all the segments of the arm are
allowed to rotate about the joints. Additionally, we require that the last joint
be constrained to slide along the positive real semiaxis (see Figure 1.2).

[ 2 1>4

Jo

Fig. 1.2. A robot arm with four segments.

A (robot arm) configuration is a possible position of the robot arm subject
to the above constraints. Mathematically a configuration is described by an
n-uple

z=1_(z1,...,2p,) €C"

constrained by

n

=1, k=12,...,n, Ier'kzk =0, ReZ’rkzk > 0.
k=1 k=1
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Visually, if z;, = €% then 6), measures the inclination of the kth segment
of the arm. The position of kth joint .J; is described by the complex number
rz1+ -+ ek

In Exercise 5.2 we ask the reader to verify that the space of configurations
is a smooth hypersurface C' of the n-dimensional manifold

M = { (01,...,0,) € (SH™ im cos Oy, > 0} c (shHm,

k=1
described as the zero set of
B:M—=R, B(01,...,0,) = Zrk sin @, = Imz'rk,zk.
k=1 k=1

Consider the function i : (S')" — R defined by

n n

h(b1,....0,) = Z rpcosf, = Re Z TRZk-

k=1 k=1

Observe that for every configuration 8 the number h() is the distance of the
last joint from the origin. We would like to find the critical points of hle.

It is instructive to first visualize the level sets of h when n = 2 and | # 7o,
as it captures the general paradigm. For every configuration 8 = (6;,6) we
have

[ry —ro| < R(O) <1y + 1o,

For every ¢ € (|ry —rz|, 71 +r2), the level set {h = ¢} consists of two configu-
rations symmetric with respect to the x—axis. When ¢ = |r1 £ 12| the level set
consists of a single (critical) configuration. We deduce that the configuration
space is a circle.

In general, a configuration 8 = (0;,...,0,) € C is a critical point of the
restriction of i to C' if the differential of h at 0 is parallel to the differential at
0 of the constraint function 3 (which is the "normal” to this hypersurface).
In other words, @ is a critical point if and only if there exists a real scalar \
(Lagrange multiplier) such that

dh(0) = \dB(0) < —rpsinl, = Arpcosb,, Yk=1,2.... . n.

We discuss separately two cases.
A. X = 0. In this case sin#, = 0, Vk, that is, 6, € {0, 7). If 2. = e we
obtain the critical points

n

(Z1s-ovzn) = (€1, 60), € = £1, Zrkfk — ReZmzkr > 0.

k=1 k

B. A # 0. We want to prove that this situation is impossible. We have



