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PREFACE

Today, both theoretical and applied interests in the use of network flow
programming are experiencing an expansion unrivaled by that of any other
optimization technique. Perhaps the most important reasons for this expansion
are the fresh advances in network computational methods that allow analysts to
solve problems of enormous size formerly unassailable by any other approach.
Networks have been used in innumerable applications to represent such things
as inventory systems, river systems, distribution systems, precedence ordering of
events, flowcharts, and organization charts. In fact, the network representation
is such a valuable visual and conceptual aid to the understanding of the
relationships between events and objects that it is used in virtually every
scientific, social, and economic field.

In this book, we present a synthesis of the more important techniques, both
recent and traditional, that are related to network flow programming. The level
of discussion is easily within the reach of first-year graduate or advanced
undergraduate students. The two background requirements are a reasonable
facility with a general-purpose programming language, such as Fortran IV, and
an understanding of Linear Programming that is consistent with a good under-
graduate text in Operations Research. The population possessing this back-
ground includes most persons holding undergraduate degrees in Computer
Science, Engineering, Operations Research, Applied Mathematics, and Business
Administration. However, the most important and largest segment of our
intended audience is the practitioner.

With this audience in mind, we do three things. First, we emphasize concepts
rather than theoretical proofs. Such proofs abound in the literature, and at the
end of the book an extensive bibliography is provided which covers the theoreti-

.cal underpinnings of the subject. Second, we include in the text a coherent
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computational package of efficient algorithms that will solve any of the various
network programming problems addressed in the book. Third, we take great
care to present both the relationships between Linear Programming and
Network Flow Programming and the interrelationships that join the various
network flow programming problems and their suggested techniques of solution.

In the process of achieving these three objectives, we have formulated a
reasonably complete exposition of the total spectrum of single commodity
network flow programming problems. This presentation ranges from basic topics
such as network storage techniques and handling representations to such
advanced topics such as stochastic and generalized networks.

The principal strengths of this book can be summarized as follows:

The description of the various network flow programming problems in a consistent and
unified notation. This makes evident the strong relationships between the problems and
the relationships to the underpinning linear programming theory.

The modular nature of the manipulation and optimization algorithms and programs.
Algorithms are presented in small packages that are easily understood by the student.
Complex operations are performed by collections of modules. Modularization also
provides for easy substitution of algorithms for experiments that test alternative
computational approaches.

Emphasis on the computational aspects of algorithms. The recent emergence of network
flow programming is primarily due to the computational procedures used to store and
manipulate networks and network components in the computer. The serious student or
user of network programming cannot neglect this aspect.

The method of presentation of the algorithms. We present algorithms at three levels: a
rigorous flowchart using notation related to the computer programs (the form of the
flowcharts is particularly compact and easily understood), a parallel English language
description, and an example.

The scope of the material covered. We cover all of the important single commodity
network flow programming problems. This includes extensive discussion of generalized
networks and networks with separable nonlinear cost functions. In particular, this
gathering of subjects is an especially useful one not currently available in existing texts.

Although most of the material in this book derives from previously published
work, some appears here for the first time. The results and algorithms given here
are immediately applicable to a wide variety of ‘“real-world” problems. The
computer codes, which we designed to be especially useful for teaching, can be
obtained from us for a nominal handling charge. In addition, a solutions manual
containing detailed answers to all exercises in the book is available to instructors
and practitioners from John Wiley on written request.

There is ample material for a two-semester course, with some
augmentation—perhaps with case studies. The first semester would comprise the
material of Chapters 1 through 7. The second semester would deal with the more
advanced material in the remaining chapters and the augmentations selected by
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the instructor. A particularly able class should be able to cover Chapters 1
through 10 in a single concentrated semester. These comments are based on our
more than five years of experience teaching this material.

We express our thanks to the great number of graduate students in the
Mechanical Engineering Department’s Operations Research graduate program
at the University of Texas at Austin who gave us assistance in the development
of this book. Finally, special thanks are due to Margaret Jensen, who typed the
numerous revisions of the manuscript.

Paul A. Jensen
J. Wesley Barnes
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CHAPTER 1

NETWORK FLOW MODELS

1.1 INTRODUCTION

As illustrated in Figure 1.1, a network is a collection of nodes and arcs. This
representation is useful for modeling a wide range of physical and conceptual
situations. Networks have been used in innumerable applications to represent
such things as inventory systems, river systems, distribution systems, precedence
ordering of events, flowcharts, and organization charts. The network representa-
tion is such a valuable visual and conceptual aid to the understanding of the
relationships between events and objects that it is used in virtually every field of
scientific, social, and economic endeavor.

Some practical situations that can be represented by a network also have the
characteristic of flow; that is, water may flow in a pipe network, traffic may flow
in a street network and products may flow in a distribution network. Models of
such situations are called network flow models. In this book, we restrict our
attention to models of this type and, as we will see, many problems not
obviously in this class can be represented by network flow models.

Further, we consider network flow models in which.the amount of flow in
each arc is controllable and the objective is to choose values for the arc flows
that optimize some measure of effectiveness. To illustrate, suppose Figure 1.2
defines a network flow model. Each arc in the network has flow directed as
specified by the arrow head of the arc. In this model, each arc has been assigned
three parameters: a lower bound, which is the minimal amount that can flow
over the arc; a capacity, which is the maximum amount of flow that the arc can
carry; and a cost for each unit of flow that passes through the arc.

Since a time period is implied in most network formulations, flows and
capacities are usually stated in terms of “flow-per-unit-time.” If no lower bound
parameter is present on an arc, it is assumed that the lower bound is zero. In

1



2 NETWORK FLOW MODELS

Figure 1.1
Network
Definition of terms
[External flow]
(Flow, lower bound,
eapacity, cost)
Figure 1.2
(0] Network Flow Problem with Solution

addition lower bounds present no practical problems since a very simple
transformation, discussed in Chapter 3, may be used to remove nonzero lower
bounds from any network. The required quantities of flow entering or leaving
the network at each node are also specified. These parameters of the nodes are
called external flows. A positive external flow enters the network at a node and a
negative external flow leaves the network. Flow is conserved at each node. Thus,
the flow entering a node from the arcs of the network plus the external flow at
the node must equal the flow leaving the node on the arcs of the network.

The flows on the arcs are controllable within the limits, or constraints, set by
arc capacities, conservation of flow, and node external flows. Clearly, these arc
flows are the decision variables of an optimization problem. The optimization



RELATIONSHIPS BETWEEN NETWORK FLOW PROGRAMMING PROBLEMS 3

problem is to choose the arc flows, within the above restrictions, to minimize the
total cost of the flow. As the reader may easily verify, the flows shown in Figure
1.2 are optimal for the given parameter values.

12 RELATIONSHIPS BETWEEN NETWORK FLOW PROGRAMMING
PROBLEMS

The problem of optimizing some objective subject to constraints is called a
mathematical programming problem. Because all the problems considered in this
text are defined by a network that carries flow, we use the term network flow
programming problem. The problem of Figure 1.2 is a specific example of the
pure, linear, minimum cost flow problem. The schematic relationships joining
this basic problem to other network flow programming problems that are
considered in this text are shown in Figure 1.3. The central point in this figure is
the pure, linear, minimum cost flow problem. The problems listed to the left are
less general in the sense that they are specializations of this basic problem.
Problems listed to the right are more general in that this basic problem is in
some way a specialization of each of these problems. The general linear
programming problem is also shown in this figure to indicate its relationship to
the network programming problems. Algorithms have been identified to solve
each of the problem classes in Figure 1.3. Algorithms for the less general
problems are more efficient, in computational time and memory requirements,
than those for the more general problems. Algorithms defined for a more
general problem can solve a less general form of that problem, while the
converse is rarely true.

//——\\\
7 LINEAR \
\PROGRAMMING )
< _PROBLEM _/

NETWORK

WITH GAINS
MINIMUM COST
FLOW PROBLEM

MAXIMUM
FLOW
PROBLEM

PURE
MINIMUM
COST
FLOW
PROBLEM

SHORTEST
PATH
PROBLEM

PURE
MINIMUM COST
FLOW PROBLEM
WITH CONCAVE
COSTS

PURE
MINIMUM COST
FLOW PROBLEM
WITH CONVEX
COSTS

TRANSPORTATION
PROBLEM

ASSIGNMENT
PROBLEM

~«——— Less General Models

More General Models ————————

) Figure 1.3
Network Flow Programming Problems Relationships
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13 SPECIALIZATIONS OF THE PURE, LINEAR, MINIMUM COST
FLOW PROBLEM

Transportation Problem

Of frequent use in practice, the transportation problem is a special case of the
minimum cost flow problem where the network representation has a distinct
form: the nodes can be partitioned into two sets N, and N, such that all arcs
originate in N, and terminate in N,. Three other special properties are:

1. All arcs have infinite capacities, which allows omission of the capacity parameter
from the arc parameter list.

2. All nodes have nonzero fixed external flows.

3. The sum of the external flows over all nodes is zero.

An example transportation problem network model, with its associated optimal
flows, is presented in Figure 1.4.

Assignment Problem

An important specialization of the transportatlon problem is the assignment
problem, in which both |N,|=|N,| and all demands and supplies are unity. Given
the cost associated with pairing any object ieN, with any object jeN,, the
problem is to find an exhaustive one-to-one pairing of the two sets’ elements that
minimizes the sum of the pairing costs. This problem is illustrated by the
network of Figure 1.5. Again the flows present in Figure 1.5 are optimal and

(Flow, cost)
[External flow]

(4] [-3]

Figure 1.4
Example Transportation Problem
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(Flow, cost)
[External flow]

Figure 1.5
Example Assignment Problem

imply the following optimal pairings: node 1 and node 5, node 2 and node 4,
and node 3 and node 6.

Shortest Path Problem

In the shertest path problem, two nodes are designated as the source and the
sink. The arc cost is commonly given the physical interpretation of arc length.
The optimal path is that sequence of arcs connecting the source to the sink such
that the sum of the arc costs on the path is minimized. An example shortest path
problem appears in Figure 1.6. The optimal flow pattern in Figure 1.6 implies
the shortest path consists of arcs (1,3), (3,4), and (4,5).

Since nodes that are neither source nor sink will always have a fixed external
flow of zero, no external flow designation is given for nodes 2, 3, and 4. This
convention will be followed consistently throughout the book; that is, the
absence of fixed external flow parameters will be interpreted as zero external
flow.

Maximum Flow Problem

For the maximum flow problem, arc capacity is the only relevant parameter.
Once a source node and a sink node are identified, the problem is to maximize
the flow passing from source to sink. An example maximum flow problem is
shown in Figure 1.7, where node 1 is the source and node 6 is the sink. One of
the several alternate optimal flow patterns is also given in Figure 1.7.



(flow, cost)
[external flow]

Figure 1.6
Example Shortest Path Problem

{Flow, capacity)

Figure 1.7
Example Maximum Flow Problem



