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Editor’s Preface

Most calculus texts can be put into one of two classes. In the first
class belong those books whose main concerns are the formal rules for
differentiation and integration and their many applications to physics
and geometry. By and large, these texts ignore the foundations of the
subject and try to hide the intellectual and technical subtleties of the
limit process, the real numbers, order of growth, and inequalities. The
successful student emerges with a good technique for solving the standard
problems that have made the calculus such an important subject. How-
ever, subtler applications are beyond him because the foundations have
not been exposed to him.

In the second class belong those texts which treat the subject
rigorously and emphasize the real number system, limits, and con-
tinuity. Unfortunately, this is so time-consuming that applications are
slighted. As a result, the student gains little ability to solve problems
and frequently has no insight as to why the concepts he has learned are
important.

The author of the present text has experimented, revised, experi-
mented, and revised in the difficult task of merging the two approaches.
I think the result is a very promising text that first emphasizes the uses
of calculus, gradually exposes the analytical problems, and ultimately
resolves them when the student has seen their importance.

I. M. Singer



Preface

Calculus has been the principal language of science ever since the
seventeenth century, when it was invented, and it is likely to continue
in this central role for some time to come. While Euclidean and analytic
geometry give good descriptions of static figures in the plane and in
space, calculus provides the means to study how things change; and it is
the task of every scientific discipline to discover what laws govern the
changes that take place around us. As calculus continues to contribute
to the overwhelming development of physical science (and social science
as well), it becomes more and more important to study and understand
this subject, which is a language, a tool, and a logical discipline all in
one.

The absolutely essential factor in understanding calculus (or any-
thing else, for that matter) is thinking about it; the quality of books and
teachers is secondary, except insofar as they can bring this about. I have
tried to facilitate thinking by giving appropriate background and fore-
ground material, by a scheme of organization that tries to discuss ques-
tions that are at least conceivably relevant to the student at the time he
is reading about them, and by deliberately withholding answers to most
of the problems. (Some problems, of course, give the answer away in
their very statement.) I think that I understand the impulse that makes
students prefer a problem whose answer is known, but this does not make
me any more inclined to yield to the impulse. The classroom-and-text-
book situation is artificial enough without divesting the problems of the
essential feature of a real problem, namely that the solution is a priori
unknown, and the solver must convince himself and his audience that he
has really found it. A small number of problems worked in this spirit
are worth ten times as many in which various computations are thrown
into the gap between a given question and a given answer.

Aside from the problems which are offered as food for thought at
the end of each section, there are simple exercises spread throughout the
text to help the reader test his comprehension on the spot. If he finds
an exercise that he cannot do, he should go back and reread. If he does
the exercise, or if he is stuck even after a careful rereading of the material
preceding it, then he should consult the solution which is given in the
back of the book, either to check his own solution, or to see how he was
supposed to do it.



Although the basic outline of the book is explained in §0.3, a few
points should be made here.

I have tried to accommodate the rather wide range of preparation
and ability that is found in most calculus classes, with the result that
the beginning of the book will be too easy for most students, and the
end will be too hard. The rigorous treatment of limits and integration
is given in appendices at the end; whenever the reader finds himself
dissatisfied with the mathematical discussions in the first half of the book,
he should look to the corresponding discussion in the appendix. If the
appendix makes sense to him at that point, fine; if not, he can carry on
with the main text, and return to the appendix after he has been better
prepared for it, particularly after Chapters VIII and IX.

Many texts achieve their aims by an ingeniously interwoven mosaic,
presenting first a small part of each main topic, and then returning peri-
odically to develop each one a little further. Even the rules for differ-
entiation may be scattered, some coming quite early, and others (e.g.
logarithms and inverse functions) rather late. This approach can be
very effective when the instructor is thoroughly familiar with the text,
but I feel that a great deal is lost in clarity of outline, and that there is
bound to be some frustration in not pushing things through to their
natural conclusion. I have found it more natural to develop each main
topic systematically in a single chapter of its own (with the exception of
differential equations, which arise at various points from Chapter V
onward).

Any success in filling in this outline must be shared with my most
patient and persistent critics, Hugo Rossi, I. M. Singer, and Nat Wein-
traub, with the instructors and students who struggled through the first
version of this work, with all its inevitable (though largely unforeseen)
difficulties, and with the publisher, who has been called upon for his
share of patience and persistence. I hope that all these labors have
not been in vain.

Robert T. Seeley
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Introduction

The road to understanding in calculus is a long one. Before setting
out, we would like to give a quick sketch of how calculus developed, and
to introduce briefly some of the men who were responsible for this
development (§0.1). Part of the development consisted of a subtle but
important change in the foundations of calculus and its parent, analytic
geometry; this is explained in §0.2. With this background, we outline
the plan of the book in §0.3, and suggest several ways to use it.

0.1 A THUMBNAIL SKETCH OF THE HISTORY OF CALCULUS

Preliminary steps. Calculus rests on mathematical developments
that go back as far as four thousand years to the Babylonians and the
Egyptians, but we won’t start there. The immediate contributions came
at the end of the Renaissance.

First, there was the development of algebra. In the fifteen hundreds,
the Italians achieved spectacular results in the solution of the equation
axt + bx® + cx* + dr + e = 0, and in the process they advanced the
use of negative and complex numbers. In 1585, Simon Stevin of Bruges
published La Disme, the first proposal of a systematic use of decimal
expansions. And there were improvements in notation by many, includ-
ing René Descartes, abandoning clumsy verbal communication in favor
of symbols very much like ours today. (This step is more important than
it seems. A good notation not only saves space on the paper; it saves
space in the memory and effort in the mind, both of which are at a
premium.)

Second, there was the development of analytic geometry, due in
large part to Descartes’ La Géometrie (1637), which made it obvious that
this new efficiency in algebra could be well employed in geometry.
Pierre Fermat, a contemporary of Descartes, also made important
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contributions in this direction, finding equations of the straight lines and
conic sections.

Third, there were various methods for determining tangents, areas,
and volumes that led naturally to the ideas of differentiation and inte-
gration, the two main ideas of calculus. The best known of these meth-
ods are Fermat’s way of drawing tangents (discovered about 1629) and
B. Cavalieri’s determination of areas and volumes, published in 1635.
And Isaac Barrow showed an important connection between thesetwo
ideas, tangents and area, that was a direct forerunner of the fundamental
theorem relating differentiation and integration.

Fourth, there were results on infinite series and products, primarily
those of John Wallis, which appeared in 1655.

Finally, in physics there was a concerted study of motion, primarily
the motion of falling bodies and of the planets. The most famous men
in this work were Galileo, the astronomical observer Tycho Brahe, and
Johann Kepler, who analyzed Brahe’s observations and deduced three
simple but profound empirical laws governing planetary motion.

The tnvention of calculus. Isaac Newton, a student of Barrow,
gathered the mathematical developments together into one general
theory, calculus, and applied it to solve the physical problems of the
motion of falling bodies and of the planets. He calculated the orbit of
a planet on the assumption that it was attracted by a force inversely
proportional to the square of the distance from the sun (a rule that had
been guessed at by others). The result agreed with Kepler’s analysis!

Newton did not shout Eureka! and run into the streets to announce
his discovery. Perhaps his caution was due to an error in the commonly
accepted distance to the moon, which was not corrected until 1679:
because of the error, the force of gravity at the surface of the earth
(as found from falling bodies) did not agree well enough with the force
that Newton derived to explain the motion of the moon. Whatever the
cause of the delay, by the time his discoveries were finally made known,
many of those having to do with calculus had already been found inde-
pendently by his contemporary Gottfried Leibniz. Thus Newton and
Leibniz are both considered the inventors of calculus.

Development and application. Neither Newton nor Leibniz suc-
ceeded in making the logic of their methods understood. Their reason-
ing was so mysterious that George Berkeley, an Irish bishop, published
in 1734 the famous pamphlet The Analyst in which he defended the faith
by pointing out that Newton and his followers treated objects no more
substantial than ‘“‘ghosts of departed quantities,” and that the founda-
tions of religion were every bit as secure as those of Newton’s analysis.

In spite of the logical difficulties, both Newton and Leibniz had
strong evidence that their methods contained some essential truth.
Newton could explain the motion of the planets. And Leibniz had
expressed his discoveries in a notation so apt that, although nobody
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understood exactly why, it led automatically te results that were seen
to be correct.

From the end of the seventeenth century to the beginning of the
nineteenth, calculus developed in the notation and outlook of Leibniz,
but continued to find its inspiration and application in the project of
explaining the physical world by mathematics, so successfully begun by
Newton. The greatest mathematicians of this period were Leonhard
Euler (1707-1783) and Joseph Louis Lagrange (1736-1813). Euler wrote
the first widely read texts on calculus and others equally popular on alge-
bra and trigonometry. He made advances in all fields of mathematics,
and in dynamics, in the study of least action and energy, in the three-
body problem of astronomy (the effect of mutual attractions between the
earth, moon, and sun), in hydraulies, and in optics. Lagrange pursued
these same questions, achieving greater unity and generality. His
greatest work is the monumental M écanique analytique (1788), which
brought the science of mechanics close to its present form.

The great wealth of mathematical results, consistent with itself and
with physical observations, proved beyond a doubt that calculus had
abstracted certain essential features of the universe in which we live.
But the logical foundations were still poorly understood, and even Euler
was occasionally led by his formal manipulations to results that can
hardly be considered correct. (One of these aberrations serves as a bad
example in Chapter IX below. Unfortunately, most of Euler’s work is
beyond the scope of this book, and we are hardly able to balance the
bad impression of this one example.)

The first great mathematician of the nineteenth century was Carl
Friedrich Gauss (1777-1855), who made important contributions in the
theory of the integers, use of infinite series, theory of surfaces, complex
numbers, difficult numerical computations, astronomy, electricity and
magnetism, surveying, and development of the telegraph.

Securing the foundations. A further contribution of Gauss was to
the underlying logic of calculus. This development continued with
Augustin Cauchy’s book Cours d’analyse (1821) and culminated in the
work of Karl Weierstrass (1815-1897) and Richard Dedekind (1831-
1916). Dedekind’s contribution was a penetrating analysis of the nature
of the real numbers; Weierstrass pointed out subtle logical oversights in
the work of his predecessors, and in his own work he adopted the stand-
ards of rigor and logic that still apply today.

The nature of the logical problems and the means of overcoming
them are illustrated by an elementary geometric example in §0.2.

0.2 FROM ANALYTIC GEOMETRY TO ANALYTIC PROOFS

Analytic geometry employs algebraic methods to obtain geometric
results. The link between algebra and geometry is a coordinate system,
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an idea that has been known for thousands of years. Two axes are drawn
as in Fig. 1, and to each point P is assigned the ordered pair of numbers

Figure 0.1

(z,y), = being the distance from P to one axis, and y the distance from P
to the other axis. This process can be reversed: given z and y, you can
measure off the corresponding distances from the axes and thus find P.
Hence every statement about points can be translated into a correspond-
ing statement about ordered pairs of numbers, and vice versa.

The correspondence is only valuable when algebra is well enough
understood so that we can solve the algebraic translation of the geometric
problem. By the time of Descartes, algebra was up to this challenge,
and when he proposed as a general method the translation of problems
from geometry to algebra, the idea was taken up so enthusiastically that
there were actually complaints about the ‘“clatter of the coordinate mill.”

But for over a century there were no complaints about the underlying
logic of analytic geometry. It was well based on the geometry of Euclid,
and this was above reproach. However, in the course of soul-searching
over the foundations of calculus, weaknesses were found even in Euclid.

One of the weak points shows up in Euclid’s construction of an equi-
lateral triangle on a given base. Take the given base AB as in Fig. 2.

Figure 0.2

Ficure 0.3



FROM ANALYTIC GEOMETRY TO ANALYTIC PROOFS b

The problem is to show that there is a point C such that the lengths AC
and BC equal the length of the given segment AB. The construction
is done by drawing about each endpoint A and B a circle of radius
r = AB, asin Fig. 3. Let C be a point of intersection of the two circles.
Then BC and AC are radii of the two circles, so BC = r = AB and
AC = r = AB, and hence ABC is an equilateral triangle.

The picture is clear, but the proof is not complete. Euclid’s axioms
and postulates do not guarantee that the two circles will intersect, so this
argument does not provide the desired point C.

But it is easy to prove by analytic geometry that there s a point C
forming an equilateral triangle ABC. Let A = (x1,y:1) and B = (2,y2)
be the given points, and let C = (z,y) be any other point. Then, by the
distance formula of analytic geometry, we have for the three distances
AB, AC, BC,

AB = ’\/(131 = xz)z + (yl - y2)2)
Vs — 2+ (1 — )3, 1)
BC = V(@ — )2 + (y2 — y)*.

AC

If we set

x=z1-;-xz+\/§y1gy2,

(@)

yl—;yz_*_\/gngxl,

y

it is a routine matter to check that the three distances in (1) are the same.
Hence we have found the desired point C.

This simple example illustrates the most basic problem in calculus
and geometry, the existence problem. Arguing geometrically, we inferred
the existence of the point C' by looking at the picture, which is not really
legitimate. But the problem is easily solved in analytic geometry, for
we deduce the existence of C' from a certain property of numbers: for
every positive number a, there exists a positive square root b such that
b? = a. We use this property in writing the distance formulas (1) and
in using 4/3 in the formulas (2) for z and .

In calculus, besides this existence question, there is the problem of
giving precise definitions of the subtle processes of differentiation and
integration. These problems, too, can be solved by appeal to the prop-
erties of numbers. Thus we are led to the modern point of view, which
is briefly this:

We start with a system of numbers, the real numbers (rationals and
irrationals), which is developed without any appeal to geometry except,
perhaps, in the role of interpreter.



