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Preface

Advances in Applied Mechanics has a history of publishing comprehen-
sive, state-of-the-art articles in numerous subfields of applied mechanics.
But in no way does this imply that this particular area has been fully
excavated. The articles in the present volume give convincing evidence that
the developments often continue, requiring an update of previous ad-
vances.

Eduard Riks’ article gives an up-to-date overview of the advancements
made in the area of (post)buckling analysis since the often-quoted article
in this series by B. Budiansky in 1974 (Vol. 14, pp. 2-65). In addition to
providing a thorough outline of modern, computational techniques for
buckling and postbuckling analysis of structures, this article also discusses
recent methods of carrying out transient analyses after loss of stability.
The latter offers new interesting insights into the notorious phenomenon
of mode jumping.

The article by Paul R. Dawson and Esteban B. Marin is related to R. J.
Asaro’s contribution to this series (Vol. 23, 1983, pp. 1-115), which marked
the beginning of a rapid expansion of numerical applications of crystal and
polycrystal plasticity. The article in this volume gives an exposition of some
important refinements in computational methods that make polycrystal
plasticity a viable tool for actually solving engineering forming processes.
Particular emphasis is placed on recent innovations in the description of
crystal orientations. In addition, this paper presents numerous examples of
metals with a hexagonal close packed (HCP) crystal structure.

Owing to seminal work in the 1960s, the linear-clastic properties of
composite materials can now be estimated analytically from the properties
of their constituents, along with the microstructure, with remarkable
accuracy. Estimates of composite properties in the case of nonlinear
material behavior, such as creep or plasticity, of one or more of the
components are much more difficult to obtain. Analytical approaches to
this problem that incorporate microstructural information have only been
attempted during the last decade or so. The article by Pedro Ponte
Castefiada and Pierre Suquet gives an overview of the latest developments

ix
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in this field based on variational methods. This scholarly work summarizes
the key theoretical tools and presents applications to numerous model
materials, with an emphasis on the effect of microstructure.

The Chapter by Oleg S. Ryzhov and Elena V. Bogdanova-Ryzhova is a
pioneering study of the fully developed nonlinear instability of viscous
boundary layer during the final stage of transition into turbulent flow. This
study is based on the important discoveries of several remarkable phenom-
ena, first found by experiment at the Novosibirsk branch of the Russian
Academy and now by theory, that the underlying mechanism actually
involves generation of solitary waves under resonant forcing from flow-
boundary roughness and vibration. It appears that these results will be of
general interest to researchers in this important field.

In the article by Wei H. Yang, the author presents a task of integrating
the existing and new bases of the mathematical theory of plasticity. In
addition to the previously established conditions of convexity and normal-
ity as two pillars of support, an additional pillar, called the duality, is
introduced here in terms of an equality inclusive condition which: is
claimed to bring the foundation to completion for the constitutive model-
ing of the mathematical theory of plasticity.

This series had the fortune of being cultivated during the period
1971-1982 under the editorship of Professor Chia-Shun Yih, who made
outstanding contributions in realizing advances of this series with distinc-
tion and subsequently continued serving as a wise counsel until his passing
on 25 April 1997. It is with our sincere appreciation of his dynamic
leadership and guidance that we pay our warm tribute to his memory.

Theodore Y. Wu and Erik van der Giessen



Advances in Applied Mechanics

Volume 34



Contents

CONTRIBUTORS

PREFACE

Buckling Analysis of Elastic Structures: A Computational Approach
Eduard Riks

I. Introduction
I1. Basics, the Geometrical Point of View
III. Basics, the Stability Point of View
IV. Computations
V. Examples and Conclusion
References

Computational Mechanics for Metal Deformation Processes
Using Polycrystal Plasticity

Paul R. Dawson and Esteban B. Marin

L. Introduction
II. Orientations and Orientation Distributions
III. Evolution of Texture and Strength
IV. Field Equations for Deformation
V. Computing the Deformation by Using the Finite-Element Method
VI. Application to Forming Processes
VII. Studies of Microstructure
VIII. Summary
IX. Notation
X. Appendix: Matrix Representations
Acknowledgments
References

Nonlinear Composites
Pedro Ponte Castanieda and Pierre Suquet
I. Introduction
II. Effective Behavior and Potentials

IIT. Variational Methods Based on a Homogeneous Reference Medium
IV. Variational Methods Based on a Linear Comparison Composite

v

vil

(S8}

22
40
61
72

78
81
88
99
113
121
133
152
157
161
162
163

172
175
187
192



vi

Contents

V. A Second-Order Theory
VI. A Selection of Results for Linear Composites
VIL. Applications to Nonlinear Composites and Discussion
VIIL. Concluding Remarks
IX. Appendices

Acknowledgments
References

The Mathematical Foundation of Plasticity Theory

Wei H. Yang

Abstract

. Introduction

II. Minkowski Norms and Hélder Inequality

. Generalized Holder Inequality

. Constructing the Dual Norm

. Application to Plasticity

. A Duality Theorem for Plane Stress Problems

References

Forced Generation of Solitary-Like Waves Related to Unstable
Boundary Layers

IL
ITL
IV.

Oleg S. Ryzhov and Elena V. Bogdanova-Ryzhova

. Introduction: Historical Perspective

The Triple Deck
The BDA System
The KdV System

. Solitons and the Onset of Random Disturbances

Acknowledgments
References

AUTHOR INDEX
SuBJECT INDEX

216
228
237
280
281
295
295

303
304
307
308
309
311
313
315

318
326
335
376
403
413
413

419
427



E05134797/ CHANICS, VOLUME 3

Buckling Analysis of Elastic Structures:
A Computational Approach

EDUARD RIKS

Faculty of Aerospace Engineering
Delft University of Technology
Delft, The Netherlands

I Hifoduchonif .- o « & [0 et i Sara e Ol e, Lol o 2
II. Basics, the Geometrical Pointof View . . .. ... ... ... ... ....... 6
A. Notation, Assumptions, Governing Equations . . . . . ... .. .. ..... 6
B. Adaptive Parametrization . . . . . .. ... .. .0 9
C. Special Points: Bifurcation and Limit Points . . . . . ... ... ... ..., 12
D. Implicit Representation of the Bifurcation Branch . . . . . . ke e 17
III. Basics, the Stability Pointof View . . . . . . ... .. .. ............. 22
AL Stabilityrand LosS of Stability . . . oo s aioic siiis aie e mi s elaln e i s 22
B. Critical Equilibrium States as Special Cases . . . .. .. ... ........ 24
C. The Notion of Attraction and Repulsion . . . . . ... ... ......... 25
D. Stability atthe Critical States . . - i v c v c v o v v mv v e e e s 29
E.. Reactive Forces-at the Critiecal States . . : . /. 2. s v a ca v v on o 36
F. Incipient Motion at Unstable Points . . . . . ... ... ............ 38
IV, 'COmMPIAHONE £ . o v aoplis Bism 0 0wl 's e il s sim: 0ot s 2ian s o Sl o 40
A. Localand Global Analysis . . . . . . .. . ...t it e, 40
B. Perturbation versus Path-Following Methods . . . . . ... ... .. .. ... 43
C. Linearized Buckling Analysis . . . . .. .. ... .. ... ... ....... 49
D. Buckling and Postbuckling Analysis . . ... ................. 52
E. Transient/Behavior & . 7 o - o8 o6 ohiw s el BT 0 g ol 54
F. TiansiepbAnalysis - < o o o coalel o i aintss & 0 5ol 0 st i ©e 0 b 56
G. Transient Analysis After Loss of Stability . . .. ............... 58
V.. Examples andiConclusion: . . v cmiv s oo 6 v akais v s e x i, L, 61
A "ShellModeling & S0 00 o] ST e e stk et e Ak e 61
B. ModeJumpingofaPlaleSImp - - 2% . 2 v o v o oz Y et e e 62
C. The Esslinger Cylinder Buckling Experiment . . . . . . .. .. .. ... ., 67
D. Discussionand Conclusion . . . . .. ....... ... ... ... .. 71
Refefencege Lo nl. - . 2 ) PRGN S, i U eC . & S f e o ol 72
1

ADVANCES IN APPLIED MECHANICS. VOL. 34
Copyright @ 1998 by Academic Press. All rights of reproduction in any form reserved.
ISBN 0-12-002034-3 0065-2165/98 $25.00



2 ' Eduard Riks

1. Introduction

Twenty-two years ago, Budiansky presented in this periodical a very compre-
hensive overview of the theory of elastic stability as it had been established up
to that date (Budiansky, 1974). This exposition of the state of the art in stabil-
ity analysis was, to a large extent, based on the general theory of buckling and
postbuckling behavior founded by Koiter some 30 years earlier (Koiter, 1945), a
theory that had suffered from a very slow start in becoming known and accepted
in the engineering community after its appearance.

In 1945, this new theory represented an important step forward in the under-
standing of the buckling behavior of structures as it was observed in engineering
practice and experiments. It was this theory that was able to explain why the de-
termination of the bifurcation point in the initial load deformation response could
not provide enough information to predict the stability behavior of a structure
with sufficient accuracy. As it was demonstrated by Koiter, the bifurcation point
could not, by itself, be used to predict the failure load of the structure. To come
to a better evaluation of this load, it was also necessary to establish the intrinsic
properties of the bifurcation point itself. If the bifurcation point were stable, as in
the case of a simply supported flat plate, the system could be loaded beyond the
critical load that is associated with this point. On the other hand, if the bifurcation
point turned out to be unstable, as in the case of a thin-walled cylindrical shell in
compression, the structure could be expected to fail long before the critical load
was reached, although it was difficult to predict with precision the load at which
this would occur. :

This so-called sensitivity of the failure load for initial imperfections in the ge-
ometry, boundary conditions, etc., existed if the bifurcation point itself was un-
stable. In contrast, imperfection sensitivity did not play a detrimental role if the
bifurcation point turned out to be stable. Apart from this important observation,
the theory also provided the keys to the determination of the equilibrium states
that bifurcate from the initial state and a means of assessing the strength of the
imperfection sensivity in the case where this sensitivity could be established.

The available methods of solution in 1974 were primarily analytical in nature.
Computers were already in use, but their influence on the development of the so-
lution methods was at first more in the area of the solution of complicated analyt-
ical formulations rather than systematic discretization of the governing equations
from the start. At that time, there were three basic difficulties connected with the
application of the theory. In the first place, the theory was an asymptotic theory,
i.e., it relied on series expansions of the governing equations and therefore the
solutions had a restricted range of validity. Second, if the primary solution path
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turned out to be nonlinear, the problem could turn out to be inaccessible for anal-
ysis, and this situation presented itself automatically if the structure was governed
by a limit point rather than a bifurcation point.

There was also a third difficulty. This had to do with the structural complexity
of the structures that could be analyzed. The solution of the governing equations
was only possible if the geometry and material build-up of the structure under
investigation remained relatively simple. If this was not the case, the obstacles
for analysis could soon become insurmountable. Thus it is not surprising that
the practical applications of the theory remained restricted to structures with a
simple geometry such as plates, cylindrical shells, and curved stiffened panels,
and this in conjunction with an elementary type of loading: uniform compression,
for example. Since then, many years have passed and the situation has gradually
changed. This change was brought about by the advent and evolution of the digital
computer, which made it possible to develop computational tools with a range and
power that were unheard of before this evolution started.

The emergence of the finite-element method is undoubtedly one of the most
important advances in numerical analysis of this time, and since 1974 it has also
had an impact on the modeling of the stability behavior of structures. Two schools
of thought on modeling arose. The first is based on the discretization of Koiter’s
asymptotic theory, at times amended with extras that the increased freedom of
this numerical approach allows. Early accounts of this treatment can be found in
Haftka et al. (1971), and more recent contributions are given in Damil (1992),
Arbocz and Hol (1990), Casciaro et al. (1992), Azrar et al. (1993), and Lanzo and
Garcea (1996), which also contain further references. The other school is a more
radical departure from the perturbation theory and is based on the continuation
principle (see, for example, Riks, 1973, 1984a; Rheinboldt, 1977; Seydel, 1989;
Crisfield, 1991; Kouhia, 1992), which in turn uses the principles of the numerical
solution of nonlinear equations (Ortega and Rheinboldt, 1970).

The continuation approach as a general and practical tool for the solu-
tion of elastic stability problems was probably first considered in 1970 (Riks,
1970, 1972), but the finite element modeling capabilities of that time were not
yet fully developed (in the nonlinear range), so that the first applications appeared
years after these capabilities became available. Since then, progress in the further
development and implementation of these techniques has been steady.

In what respect does the continuation method (also called the incremental
method) differ from the classical perturbation method? The basic difference is
that the solutions are no longer restricted to a small domain of the configuration
space as with the perturbation method, but can be obtained everywhere in this
space. The continuation method is thus a global method, whereas the perturbation
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method is a local method. With the continuation method, the initial load deforma-
tion path, as pictured in Figure 1, can be computed irrespective of degree of the
nonlinearity of the problem. With this approach the stability of the solutions can
be monitored during the computations, and by doing this the critical point at which
loss of stability occurs (A or B) can be determined. The technique also offers a
way to compute the branches of bifurcation points (under certain restrictions),
so that it becomes possible to assess the postbuckling behavior of the structural
model. Because of the versatile finite element modeling capabilities that are cur-
rently available, the applications of this type of analysis are no longer confined
to standard problems with simple geometries, but can be extended to real world
systems. Recent examples of such analyses can be found in Vandepitte and Riks
(1992), Young and Rankin (1996), and Nemeth er al. (1996).

Thus the continuation principle in combination with the finite-element dis-
cretization method enables one to determine the static equilibrium branches (for
as far as is deemed necessary) of a very general class of nonlinear structural
models. Once these solutions are obtained, the stability behavior of these struc-
tures can be explained by examining the particular geometrical properties of these
branches.

load

deformation

—

O =] = = —

I
|
I
|
I
I
I
d

deformation
FIG. 1. Initial stable response followed by collapse.
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But a stability analysis as described above is still a product of the classical
quasistatic approach whereby only the solutions of the equilibrium equations are
reviewed. According to the philosophy behind this approach, loss of stability is a
dynamical transformation of state (see Figure 1) that starts at an unstable critical
equilibrium state (a bifurcation point or limit point) but will end in a state in
which the structure is no longer usable. Consequently, the critical state at which
the motion starts is of interest, but what happens after this state is reached is not.
However, it can be asked whether this quasistatic point of view can always be
maintained.

It has been known for a long time that unstable buckling does not always lead
to an unserviceable state of the structure. To the contrary, it can happen that af-
ter such an event further loading is still possible. This occurs, for example, with
plates and stiffened panels, and in these particular cases the phenomenon is called
mode jumping. Thus it is not possible, at least not in the general case, to pre-
dict beforehand what will happen when an unstable critical point is reached. The
passage through the critical state may have the result that the structure will end
up in a new state with irreparable damage, but it may also happen that the struc-
ture remains in operation with no damage at all. In general, the actual outcome
is dependent on the problem at hand and can only be predicted by an extended
analysis, i.e., by taking the transient motion into account.

The methods for integrating the equations of motion in the field of solid me-
chanics are actually quite well developed (Belytschko and Hughes, 1983; Argyris
and Mlejnek, 1991), and the computer resources that are available at the present
time no longer hinder the use of these methods. Consequently, in this chapter we
not only consider the use of continuation methods for the solution of the equations
of equilibrium, but also the use of transient methods to provide an answer to the
question of how an actual buckling process works and where to it will lead. We
believe that there are many problems in engineering practice where the answer to
this question is badly needed.

The discussion will closely follow the ideas that were developed in two recent
publications (Riks et al., 1996; Riks and Rankin, 1997), but we aim here at a more
complete presentation. Just as in the two references mentioned, we will introduce
the numerical procedures by first giving a review of the elementary bifurcation
theory for ordinary nonlinear equations that depend on a single parameter. The
first part of this review is purely a geometrical introduction of this subject that is
meant to serve as a preparation for the development of the static methods to be
discussed later. The second part is focused on the stability or loss of stability that
occurs at bifurcation or limit points, which is necessary for the understanding of
what happens when such a point is reached.
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The introduction to the computational procedures begins with a short descrip-
tion of the path-following method to be used for the computation of the static
equilibrium branches, together with additional techniques that are needed for the
analysis of these solutions. The computation of the buckling motion that starts at
the point of loss of stability is the next subject, and the synthesis of this technique
with the previous methods ultimately leads to the appropriate computational strat-
egy, which makes it possible to numerically simulate the quasi-static as well as
the dynamic elements of a complete buckling event.

A good way to demonstrate the feasibility of a new strategy is to verify its pre-
dictive power by means of test results of well-documented buckling experiments.
Therefore, the chapter will end with the description of the numerical simulation
of two well-known buckling tests: the mode-jumping experiment of a plate strip
carried out by Stein (1959a) and the classical tests on cylindrical shells in com-
pression that were carried out by Esslinger and collaborators in 1970 (Esslinger,
1970; Esslinger et al., 1977).

II. Basics, the Geometrical Point of View
A. NOTATION, ASSUMPTIONS, GOVERNING EQUATIONS

The structural models that will be studied here are supposed to be purely elas-
tic. It is further assumed that an appropriate discretization procedure is available
that allows us to represent the state of the structure in terms of a vector of finite
dimension. In the following two sections we will first concentrate on the solutions
of the static equations of equilibrium.

To understand what type of loadings will be considered here, it is convenient
at first to make the distinction between the configuration space Cyx, in which
the state d® of the structure is described and the computional space Dy in which
the freedoms, d, that are to be determined are described. Here N is the dimen-
sion of Dy and (N + K) is the dimension of Cyg. Thus the computational
space Dy, which is a subspace of Cy .k, refers to all of the freedoms that are de-
termined by the governing equations, while the configuration space refers to the
same freedoms plus the variables that are prescribed by the kinematical boundary
conditions. In this manner, the configuration of the structure under load can, at all
times, be represented by an (N + K )-dimensional vector,

N+K

dc = Z de;, 2.1)
=



