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Preface

This text is appropriate for a senior or first-year graduate course on logic program-
ming,. It concentrates on the formal semantics of logic programs, automatic theorem-
proving techniques, and efficient implementation of logic languages. It is also an
excellent reference for the computer professional wishing to do self-study on the
fundamentals of logic programming. We have included numerous examples to illus-
trate all the major concepts and results. No other text deals with implementation
in as much detail. Other discussions of implementation techniques do not explain
and develop the relationship between interpreter (or compiler) behavior and reso-
lution theorem proving. We stress that connection throughout.

Logic Programming

A course just on logic programming is a reasonable endeavor for several reasons.
First, logic programs offer a different way of thinking about problem solving. They
have both a declarative and a procedural meaning, so that a person can think about
the correctness of a program apart from its operational behavior. Second, logic
programming languages have a “stronger” and more natural formal semantics than
most other programming languages. They are, therefore, a good vehicle for studying
language semantics and meaning-preserving program transformations. Third, logic
programming languages are very-high-level languages. They are almost specification
languages (languages for specifying what problem is to be solved apart from the
means of solution). But for logic programming languages, these specifications can
be executed directly. Fourth, detailed knowledge of how these languages are imple-
mented will allow a programmer to program more efficiently and effectively in
them. Fifth, the implementation techniques and strategies can be applied to improv-
ing the efficiency of other high-level and run-time-intensive languages.

Logic languages, particularly Prolog and its concurrent and parallel variants,
have gotten much publicity in connection with their use in proposed “fifth gener-
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PREFACE

ation” systems, which rely heavily on artificial intelligence and knowledge repre-
sentation techniques. There are many reasons for the interest. For one, the structure
of Prolog resembles that of rule-based expert systems and knowledge bases (data-
bases with inferential components). Rule-based systems typically employ more var-
ied inference strategies than Prolog, but Prolog provides a foundation for under-
standing the semantics of other kinds of rules and is itself a good language for
writing rule processors with various search strategies. Prolog is well suited for
symbolic manipulation and information representation tasks. Construction and
extraction of data structures are the principal mechanisms for computation in Prolog,
and often the same code can be used to do both operations. Also, code can easily
be treated as data in Prolog, through the use of “metaprogramming” features,
making it a natural choice for writing tools that generate or modify other programs.
The integration of data and procedure in Prolog is almost seamless. Whether a
particular relationship is represented as a table or a function, or some mixture of
the two, is largely irrelevant to other parts of a program that use the relationship.
This transparency gives great flexibility in deciding how to represent a particular
chunk of knowledge in Prolog. Finally, the declarative semantics of “pure Prolog”
make it amenable to implementation on parallel machines, since the meaning of a
program is not bound up with a particular model of computation.

The only background absolutely necessary for this book is a first course in data
structures. A previous course in compilers is useful for understanding the parsing
and symbol table issues. Also, a course with abstract mathematical content that
involves theorems (such as finite structures, automata theory, or abstract algebra)
is helpful for the more formal material, but we have tried to be self-contained for
the topics in mathematical logic. -

How to Use This Book

There is more material here than will comfortably fit in a semester. The material
on model elimination and on the connection of Datalog to relational algebra can
be skipped with no effect on continuity. If Prolog programming is covered in another
course, Chapters 8 and 12 are not essential. Also, the chapters on formal logic are
fairly independent of the chapters on implementation. A course on formal foun-
dations of logic programming could omit Chapters 3, 6, 10, and 11. A course
stressing implementation techniques could leave out portions of Chapters 2, 5, and
9 after the sections on Proplog, Datalog, and Prolog semantics, respectively.
When either of us has taught the course, we have included a programming
component—sometimes a course project, sometimes a number of shorter assign-
ments. The appendix presents two ways the course might be structured to include
a course project involving Prolog. Shorter programming projects require a bit more
planning to integrate, since the book does not get to term structures until fairly far
along in the text. One possibility is to introduce lists earlier to permit more inter-
esting Prolog programming assignments sooner. Students in the course will need a
companion text, a Prolog programming primer, if there is any substantial pro-
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gramming component. Ours is not a text for Prolog programming techniques, or
Prolog for certain applications, although those might be reasonable topics for a
follow-up course. (We are, however, faithful to DEC-10 Prolog and C-Prolog syntax,
and all of the longer examples have actually been run.) We have tried to make the
programming examples realistic. Some of the programs (such as the course require-
ments and fabric examples from Chapter 1 and the poker example from Chapter
7) have to be fairly large to capture a reasonable slice of the real world accurately.
Such examples are too unwieldy to use in the classroom in their entirety; instructors
should select subsets or alternate examples for presentation.

The material in this book is more important than Prolog programming tech-
niques for a serious computer science student. Most of the computer science in logic
programming is not in Prolog applications and programming. However, the material
presented here will help a student use Prolog to its best capabilities. Programming
in Prolog without knowing its logical foundations means a student probably does
not grasp the true nature of the language. Prolog is an impure language—if a student
does not recognize the underlying ideal, he or she cannot separate good techniques
from bad techniques. A student familiar with the material in this book will be better
able to give Prolog programs, or fragments of them, a declarative reading and will
be better able to write programs with a declarative meaning. Such programs are
not only easier to understand and debug, they almost always are executed more
efficiently. A logic programmer has to direct a theorem prover to provide control
over the deduction process in order to get reasonable performance. He or she must
understand the deduction process to control it intelligently.

The reader may question why we use Prolog and Prolog subsets as the only
examples of logic programming languages when we are trying to give a general
introduction to the field. First, Prolog is currently the only real logic programming
language, and the only one in widespread use. Second, it is the logic language for
which the most advanced implementations exist. Compilers exist for few other logic
programming languages. Third, the choice of language does not much affect the
sections on mathematical logic. The material covered in those sections is applicable
to any logic programming language. Fourth, Prolog’s deduction process is simple
and straightforward (top-down, left-to-right) and is hence easier to control. We will
take up other logic programming languages in a planned companion volume.,

This book is based on notes for a first-year graduate course offered at SUNY
Stony Brook and Oregon Graduate Center. Those notes were based, in turn, on a
compiler course at Stony Brook in which students implemented a Prolog compiler,
and a graduate seminar at OGC in logic programming.
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Introduction

A critical property of a programming language is its level of abstraction. We want
to program in a more declarative style—saying what a program should compute,
rather than how to compute it. In logic programming we define properties and
relationships for the objects of interest, and the system determines how to compute
with those objects. In this paradigm programming becomes setting up constraints
with knowns and unknowns. The system solves for the unknowns, analogously to
solving linear equations or to a spreadsheet filling in values of empty cells. There
are some key differences, though, between the latter examples and the kind of
constraints solving in logic programming.

1. In logic programming the constraints involve data structures and variables
representing data structures, rather than algebraic equations and variables
representing numbers.

2. There is usually some degree of nondeterminism involved in solving logic
programming constraints. We expect constraint solving to yield sets of answers
in general. In logic programming we typically have more than one rule for
resolving a constraint into a set of subconstraints. Often we want the answers
for all the possible ways of resolving the constraint. In a spreadsheet we
expect a solution to the constraints to yield a unique value for each unknown
cell.

3. There are multiple strategies for solving the constraints defined by logic
programs, and many different ways have been proposed for evaluating logic
programs, including parallel, data flow, and intelligent-control strategies.
This choice of implementation techniques is evidence that we have abstracted
away more of the machine details in logic programming languages than in
more conventional programming languages.

Why is a declarative style in a programming language better than the tradi-
tional procedural style? Such a style encourages the programmer to think about the
intent of a program, about the static description of relationships and properties
that are to hold in a program, without having to worry about dynamic changes in
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the store of a computer. It de-emphasizes the role of time in understanding programs
and allows parts of a program to be examined and understood in isolation. Programs
in a declarative language are easier to modify because we can add further constraints
without having to worry about the timing of checking those constraints. Adding a
constraint does not invalidate other constraints already present, so statements are
not context dependent. In a procedural language the effect of a statement depends
on the statements executed before it, and the statement changes the context for all
statements that follow it. For example, encountering the statement X := X + 1
means the value associated with variable X is different for statements that go before
and those that come after. The semantics of a statement in a procedural language
is quite complex, because that meaning is both dependent on a context and indicates
a modification to the context.

Divorcing the meaning of a program from any particular computational model
is important. The separation gives the freedom to pick alternative implementations
of a program. The fact that there are a number of alternative implementations gives
evidence that a language is at a high level of abstraction. For relational database
query languages—a particularly simple sort of logic programming language—maost
query evaluators examine alternative execution strategies for a query and pick the
one estimated to be the most time efficient. The split between meaning and the
computation model means declarative languages are more amenable to optimization,
because such languages can express the intent of a program apart from a particular
implementation of that intent. Optimizers need not analyze programs to extract the
intent from the implementation, as with say, a vectorizing compiler for FORTRAN.
Of course, declarative languages have efficiency penalties. We cannot expect an
evaluator always to find as efficient an execution strategy as a human programmer
could.

The most widely used logic programming language is Prolog,. It does not achieve
all the ideals just set forth. We do need to think about control when writing a
Prolog program, but at least we may ignore control for a first cut at understanding
the program.

Consider what we need for an effective declarative language.

1. A clear statement of the semantics of the language, independent of opera-
tional considerations. For logic programming, the semantics is based on
formal logic and model theory. For numerical equation solvers, the seman-
tics comes from arithmetic and algebra.

2. A theory of meaning-preserving transformations on programs—that is, a
deduction system. In logic programming we have rules and properties relat-
ing knowns and unknowns, and we apply transformations to them to solve
for the unknowns. An example of such a transformation in the domain of
algebra is that adding equals to both sides of an equality or inequality
preserves the relationship.

3. Strategies for applying the transformations to yield a solution for the unknowns
if it exists, and special forms for statements that support particular strategies.
The special forms should make the strategy easy to express. An example is
Gaussian elimination. A set of simultaneous linear equations is organized
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into a matrix of coefficients. That organization allows certain solution-
preserving transformations to be applied to the set of equations through
scaling, row swaps, and substraction of rows. It is easy to express a sequence
of these transformations that will solve the equations in terms of iterations
through the matrix.

4. Suitable data structures and algorithms for implementing the strategy effi-
ciently in a particular machine. In the Gaussian elimination example we
have the choice of implementing the coefficient matrix in row-major or
column-major order, or perhaps with some kind of linked structure or entry
list if we expect a sparse matrix.

This book is organized into three parts, each of which covers the preceding
points 1—4 for three successively more powerful logic languages. Part I is on Proplog,
a logic langnage based on propositional logic. Part II is on Datalog, a language for
predicate logic (without function symbols). Part III covers Prolog, a language based
on functional logic (predicate logic including function symbols). In each part there
are at least three chapters—call them A, B, and C.

Chapter A introduces the language via examples to give an intuitive semantics.
It also presents a naive interpreter (constraint solver) based on the intuitive
semantics.

Chapter B formalizes the semantics using the appropriate logic and models
and then looks at the semantics of the full logic (since our languages are based
on restricted subsets), deduction, a particular format for formulas (called clauses),
and a deduction rule (called resolution) that works on clauses. The resolution
rule is the basis for a procedure, known as refutation, for deciding the validity
of a formula. We then look at a subclass of clauses, called Horn clauses, and
specialize and refine the refutation procedure for that subclass. We show that
the specialized procedure is the basis of the naive interpreter of Chapter A,
demonstrating the correctness and completeness of the interpreter.

Chapter C takes a naive interpreter, known correct from Chapter B, and opti-
mizes it using special data structures and the Procrastination Principle: put off
until later work that might not have to be done, such as concatenating lists or
copying data structures.

Part I, on Prolog, includes three additional chapters beyond A, B, and C. One
chapter is on procedural extensions to the pure logic form of the language. The
second chapter is on further optimization of the interpreter and compilation tech-
niques, the latter being based on symbolic execution and in-line expansion of parts
of the interpreter. The third chapter contains an extended example on implementing
a database query language in Prolog. It illustrates areas in which Prolog has proved
particularly apt: parsing, translation, code generation, and code optimizations.

Why did we choose to develop our topic and recapitulate it twice rather than
doing it just once for Prolog? We use a sequence of three increasingly complex
languages because we can expound certain concepts more clearly without all the
complications of functional logic. We can introduce a few new ideas for each lan-
guage. Often an argument or development from one language carries over to the

xili



Xiv

INTRODUCTION

next with little or no change. Also, for Prolog, the theorem-proving theory diverges
quickly from the efficient interpreter. It is easier to point out the connections in
the simpler languages.

Why did we pick the particular sublanguages of Prolog that we did? We chose
Proplog because it corresponds to a natural subset of first-order logic, propositional
logic, and the structures and models used there are finite and easy to reason about.
We chose Datalog because of its connection with query languages for relational
databases (which is where the “Data” part comes from). Relational query languages
are essentially Datalog without recursion. Such languages are another major example
of declarative languages. Datalog also permits us to examine the notion of a logical
variable in its simplest form.

We have tried to be obvious rather than clever or succinct. There are no great
mysteries to logic programming semantics or Prolog implementation. We present
those topics so that any advanced computer science student or practitioner can
master them.



Contents

PART I Proplog and Propositional Logic 1

Part I Introduction 1

Chapter 1 Computing with Propositional Logic 3

1.1.

1.1.1.
1.1.2.

1.2.

1.2.1.
1.2.2.
1.2.3.
1.2.4.

1.3.

1.3.1.
1.3.2.

1.4.
1.5.

Representing Knowledge in Proplog 3
Computer Science Requirements Example 4
Fabric Example 8

Evaluating Proplog Programs 16
Bottom-up Evaluation 17
A Simple Bottom-up Interpreter 21
Top-down Evaluation 25
A Simple Top-down Interpreter 29

Proplog as a Declarative Component in a Procedural System 33
Traffic Light Example 33
Fabric Identification Program 36

Exercises 39

Comments and Bibliography 43

Chapter 2 Propositional Logic 45

2.1.

2.1.1.
2.1.2.
2.1.2.1.
2.1.3,

Propositional Logic for Proplog 45
What Is a Logic? 46
Formal Syntax of Proplog 46
Parsing Proplog Programs 48

Semantics for Proplog 50
XV



xvi

CONTENTS

2.1.4.

2.2,
2.2.1.
2.2.2.

2.3.
2.3.1.
2.3.2.

2.4,

2.4.1.
242,
2.4.3.
2.4.4.

25.
2.6.
2.7,

Deduction in Proplog 52

Full Propositional Logic 55
Syntax of Propositional Logic 55
Semantics for Propositional Logic 57

Deduction in Propositional Logic 59
Resolution in Propositional Logic 62
Limiting Choice in Resolution 72

Horn Clauses 78
If 79
Horn Clause Syntax 81
Resolution with Horn Clauses 82
Search Strategies 90

Negation and the Closed World Assumption 94
Exercises 99

Comments and Bibliography 104

Chapter 3 Improving the Proplog Interpreter 107

3.1,
3.2
3.3
3.4.

Indexing Clauses 108
Lazy Concatenation 109
Exercises 116

Comments and Bibliography 116

PART II Datalog and Predicate Logic 119

Part II Introduction 119

Chapter 4 Computing with Predicate Logic 121

4.1.
4.2,
4.3.
4.4.
4.5.
4.6.
4.7.

Why Proplog Is Too Weak 121

Pasta or Popovers 125

A Simple Datalog Interpreter 133
Separating Noodles from Muffins 138
Answers 140

An Example of Recursion 142

Informal Semantics for Datalog 145



CONTENTS
4.8. Procedural Extensions to Datalog 147
4.8.1. Negation-as-Failure 147
4.8.2, Numbers, Comparisons, and Arithmetic 151
4.9, Datalog and Databases 153

4,10. Exercises 160
4.11. Comments and Bibliography 165

Chapter 5 Predicate Logic 167

5.1. Predicate Logic for Datalog 168
5.1.1. Formal Syntax of Datalog 168
5.1.2. Semantics for Datalog 168

5.2. Full Predicate Logic 172

5.2.1. Syntax of Predicate Logic 174
5.2.2. Semantics for Predicate Logic 178
5.3. Deduction in Predicate Logic 185
§5.3.1. Special Forms 189

5.3.2. If 191

5.4. Herbrand Interpretations 192
54.1. Herbrand’s Theorem 194

5.5. Resolution in Predicate Logic 196
5.5.1. Correctness of Resolution 204
55.2. Completeness of Resolution 205
5.6. Horn Clauses 209

5.7. Exercises 217

5.8. Comments and Bibliography 222

Chapter 6 Improving the Datalog Interpreter 225

6.1. Representations 226

6.2, Naive Datalog Interpreter 228

6.3. Delayed Copying and Application 233

6.4, Delayed Composition of Substitutions 236

6.5. Avoiding Copies Altogether 240

6.5.1. Applying Substitutions in the Matching Routine 240

6.5.2. Structure Sharing for Code 243

xvii



xviil

CONTENTS

6.6. Simplifying Local Substitutions 249
6.7. Binding Arrays 251

6.7.1. Looking Back 257

6.8. Implementing Evaluable Predicates 258
6.9. Exercises 261

6.10. Comments and Bibliography 262

PART III Prolog and Functional Logic 265
Part III Introduction 265

Chapter 7 Computing with Functional Logic 269

7.1. Evaluating Arithmetic Expressions Using Datalog 269
7.2 Adding Structures to Datalog 275

7.3. A Simple Prolog Interpreter 279

7.4. Evaluating Expression Trees 284

7.5. Informal Semantics for Prolog 286

7.6. Lists 287

7.6.1. List Syntax 290

7.6.2. Difference Lists 293

7.6.3. Transitive Closure with Cycles 296

7.6.4. An Extended Example: Poker 299

7.7. Exercises 308

7.8, Comments and Bibliography 312
Chapter 8 Prolog Evaluable Predicates 313
8.1. Prolog Pragmatics 313

8.1.1, Documentation Conventions 313

8.2, Input/Output 314

8.3. Call 318

8.4. Controlling Backtracking: The Cut 320
8.5. Arithmetic 323

8.6. Cog?trol Convenience 326



CONTENTS
8.7. Metaprogramming Features 327
8.7.1. Term Testing and Comparison 328
8.7.2. Structure Manipulation 331
8.8. Lists of All Answers 334
8.9. Modifying the Program 337
8.10. Exercises 342
8.11. Comments and Bibliography 345

Chapter 9 Functional Logic 347

9.1. Functional Logic for Prolog 349
9.1.1. Formal Syntax of Prolog 349

9.1.2. Semantics for Prolog 349

9.2. Full Functional Logic 352

9.2.1. Syntax of Functional Logic 353

9.2.2. Semantics for Functional Logic 353
9.3. Deduction in Functional Logic 357
9.3.1. Special Forms and Skolem Functions 360
9.4. Herbrand Interpretations 364

9.4.1. Herbrand’s Theorem 366

9.5. Resolution in Functional Logic 369
9.6. Answers 372

9.7. Model Elimination 374

9.8. Horn Clauses 376

9.9. Exercises 379

9.10. Comments and Bibliography 379

Chapter 10 Improving the Prolog Interpreter 381
10.1. Representations 381

10.2. Naive Prolog Interpreter 384

10.3. Delayed Copying and Application 388

10.4. Delayed Composition of Substitutions 389
10.5. Avoiding Copies Altogether 390

xix



CONTENTS

10.5.1. Applying Substitutions in the Matching Routine 390

10.5.2. Structure Sharing for Code 392

10.5.2.1. Structure Sharing for Terms 394

10.5.2.2. Copy on Use for Terms 399

10.5.2.3. Comparison of Methods 402

10.6. Binding Arrays 403

10.7. Implementing Model Elimination with Prolog Techniques 409

10.8. Exercises 412
10.9. Comments and Bibliography 415

Chapter 11 Interpreter Optimizations and Prolog
Compilation 417

11.1, Activation Records 417

11.2. Including Variable Bindings in the Stack Frame 424
11.3. Backtrack Points 425

11.4. Implementing Evaluable Predicates 427

11.5. Reclaiming Deterministic Frames 429

11.5.1. Deterministic Frames with Structure Sharing 432
11.6. Indexing 433

11.7. Last Call and Tail Recursion Optimizations 437
11.8. Compiling Prolog 444

11.8.1, The Warren Prolog Engine 447

11.8.2. WPE Instructions 449

11.8.3. Allocating Binding Frames 451

11.8.4. A Complete Datalog Example 452

11.8.5. Temporary Variables 454

11.8.6. Nondeterminism 456

11.8.7. Terms in Clauses 462

11.8.7.1. Terms in the Body 463

11.8.7.2. Terms in the Head 464

11.8.8. Final Literal Optimization 466

11.8.9. Trimming Environments 470

11.9. Exercises 471

11.10. Comments and Bibliography 476



