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Preface

Written in 1979-80, these notes constitute the first three chapters of a book
that was never finished. It was planned as an introduction to the field of dynamical
systems, in particular, of the special class of Hamiltonian systems. We aimed at
keeping the requirements of mathematical techniques minimal but giving detailed
proofs and many examples and illustrations from physics and celestial mechanics.
After all, the celestial N-body problem is the origin of dynamical systems and gave
rise in the past to many mathematical developments.

The first chapter is about the transformation theory of systems and also contains
the so-called Hamiltonian formalism. The second chapter is devoted to periodic phe-
nomena and starts with perturbation methods going back to H. Poincaré and local
existence results due to Lyapunov and E. Hopf. Classical periodic solutions are es-
tablished in the restricted 3-body problem and the celestial 3- and 4-body problems.
Variational techniques then allow searching for global periodic orbits like closed
geodesics on Riemannian manifolds and closed orbits on convex energy surfaces
of general Hamiltonian systems. The Poincaré-Birkhoff fixed point theorem of an
area-preserving annulus map in the plane is also proven in the second chapter. This
theorem led to the V. Arnold conjectures about forced oscillations of time-periodic
Hamiltonian systems on symplectic manifolds. Incidentally, after these notes were
written, the Arnold conjectures triggered new developments in symplectic geom-
etry and Hamiltonian systems. Also, it turned out that the periodic phenomena
of Hamiltonian systems are intimately related to symplectic invariants and surpris-
ing symplectic rigidity phenomena discovered by Y. Eliashberg and M. Gromov.
These more recent developments are presented in the book Symplectic Invariants
and Hamiltonian Dynamics by H. Hofer and E. Zehnder.

The third chapter is devoted to a special and interesting class of Hamiltonian
systems possessing many integrals. Following the construction of the so-called ac-
tion and angle variables, illustrated by the Delaunay variables, several examples of
integrable systems are described in detail. Chapters 4 and 5 should have dealt with
the analytically subtle stability problems in Hamiltonian systems close to integrable
systems known as KAM theory, and with unstable hyperbolic solutions, which, in
general, do coexist with the stable solutions. Unfortunately, these chapters were
never completed.

These notes owe much to Jiirgen Moser’s deep insight into dynamical systems
and his broad view of mathematics. They also reflect his specific approach to math-
ematics by singling out inspiring typical phenomena rather than designing abstract
theories.

Finally, I would like to thank Paul Wright for carefully checking these notes.
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CHAPTER 1

Transformation Theory

1.1. Differential Equations and Vector Fields

(a) The flow of a system of differential equations. The object of these lecture
notes are systems of ordinary differential equations of the form

dx
(1.1) Ezf(x)
or in components,
(1.1) ﬁ=fj(x), J = Ly ss B,
dt

defined in an open domain D C R". The right-hand side f(x) is a vector-valued
function mapping D into R”, belonging to C"(D,R") for r > 1. We recall the well-
known fact which will not be proven here that system (1.1) has a unique solution x(¥)
for a given initial value x(0) € D, where the solution x(¢) is defined on an interval
lt] < 8, 8 > 0. More precisely, if K is a compact subset of D, then there exists a
8 > 0 depending on K and f such that the solution x(¢) with initial values x(0) € K
exists for the interval
I ={r:|t] <é}.

To indicate the dependence on the initial value x(0) we denote this solution by
x(t) = ¢'(x(0)).
Then, according to the standard existence theorem
¢'(x(0) e C'(I xK,D).

For fixed ¢ € I we can view ¢’ as a mapping of K into D, which satisfies

(1.2) ¢'o¢p® =¢'™ for sufficiently small values of |z| and |s|
and
(1.3) 0 — identity.

This one parameter family of mappings ¢’ is called the flow of system (1.1). Clearly
we have
d¢'

== f(¢") for sufficiently small |¢].

Setting ¢ = 0 we see that ¢', in turn, determines f uniquely.

Setting s = —t in (1.2) we see that ¢' has an inverse (defined on ¢'(K)) which is
also in C”. We will call a C”-mapping which has a C” inverse a C"-diffeomorphism.
Thus ¢' is a C” diffeomorphism, where defined.

1



2 1. TRANSFORMATION THEORY

We will also consider systems where f is C* or real analytic (C®). The corre-
sponding mapping ¢’ is then C*> or C*, respectively.
~ Geometrically one interprets system (1.1) as a vector field, which assigns to
each point x € D the vector f(x). The solution x(t) = ¢’(x(0)) is then a curve
which at every point is tangent to this vector field. We will use the terms "system of
differential equations” and "vector field" interchangeably.

(b) Transformation properties. We subject system (1.1) to an invertible coor-
dinate transformation

x =u(y)
where we assume that the Jacobian matrix

Bu,-
=u
Byj ¥
is invertible. Then (1.1) goes over into a new system, say,

dy
I =g(y)

where

(1.4) g =u;" fuy).

This is the transformation law for vector fields. If we denote by ¥/’ the flow belong-
ing to g, we have

(1.5) vi=ulop'ou

where o indicates composition of the various diffeomorphisms and ! denotes the
inverse map of u. Of course, the above relations have to be restricted to domains in
which the mappings are defined.

To verify (1.5) we simply define ¢ by (1.5) and then show that it agrees with
the flow for g. Clearly %' = identity for + = O and differentiating the relation

uowt:(ﬁtou
we get
d t
uyc;/: = f(¢'ou)= fuoy') =u,g(y")
hence dip
Pl (¥).

Since ¥’ is uniquely determined by this relation and its initial value, (1.5) is proven.
The transformation law (1.4) is the same as that for the partial differential oper-
ator

- 3
X = ;fj(x)a—xj.

To describe the transformation laws under x = u(y), observe that for any h = h(x) €
C! the expression
(Xh)ou
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must be expressible in terms of a differential operator Y acting on hou, i.e.,
(Xh)ou=Y(hou).

We call Y the transformed differential operator and denote it by u* X, so that

(1.6) W*X)hou)=(Xh)ou.

If we write

a
u*X = y)—,
2_ a5
we find for the vector g = (gi) readily

g:uy'lfou,

as we claimed.
There is a more direct relationship between the vector field (1.1) and X, namely

d
Xh = —h(¢’
PR @) _,»

i.e., Xh is the directional derivative of the function 4 along the vector field.
The operator X is determined by the vector field f and conversely X determines
f indeed for A = x; we find

Xx; = fi(x).

Therefore we will also use the operator X to describe the vector field. This is merely
another notation which, however, has the advantage to reflect the transformation
law under coordinate transformations. For this reason this notation is preferred in
differential geometry and in the global study of vector fields on manifolds.

Incidentally, this notation shows that the vector fields in D form a Lie algebra
since the commutator

XY -YX=[X,Y]

of two vector fields X, Y defines again a vector field. Indeed, if

de 9 = 9
X = § (x)—, Y= § —
' fix) 5%, gk(x) ™
=1 k=1
then

- 98k afc) 0
X,Y]= =L L
[X.7] Z (ff ox; ' ax; ) oxy
j.k=1
since the second-order derivatives cancel. It is an almost obvious consequence of
the definition (1.6) that
w X, Y]=[u*X,u"Y]

so that the definition of [X, Y] is independent of the choice of the coordinates.



4 1. TRANSFORMATION THEORY

(c) Local equivalence of vector fields. Two vector fields f,g which can be
transformed into each other will be considered as equivalent; i.e., f, g are considered
equivalent in some domains D, D», respectively, if there exists a diffeomorphism
u : D, — D for which

g= uy_l fou.
Only properties which are preserved under such transformation are of interest.

Therefore it is important to realize that locally, in the neighborhood of a point
at which f # 0, it is equivalent to any other vector field with this property, e.g., to
the vector field

dy

dt
where ¢, is the unit vector in the y; direction. Geometrically this statement simply
means that in a small neighborhood of a point x* where f(x*) # O the flow can be
mapped into the parallel flow

€l

W) =ytter.

FIGURE 1.1

LEMMA 1.1 If f,g define two vector fields with f(x*) # 0, g(y*) # 0, then there
exist two neighborhoods Dy, D, of x*, y*, respectively, and a map u : D, — D such
that u;'fou =g.

PROOF: We may take x* = y* = 0 by applying a translation. By appropriate
choice of the coordinate axes we may assume f1(0) = (f(0),e;) #0. If ¢'(x) defines
the flow of f, we set

u(y) =@ (0,y2,...,yn)-
Then one computes readily
det(uy(0)) = f1(0) # 0

so that x = u(y) defines a diffeomorphism near x = 0. Moreover, with ¥'(y) =
y+te; we have

uoy'(y) =" (0, y2,...,y1) = ¢ ou(y)
so that u maps ¢’ into the parallel flow y’. By differentiation we find

u;lfouzel.
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Similarly, we can construct a diffeomorphism v with
v; L gov=eyp,
thus u ov™' takes f into g. O

The assumption f(x*) # 0 in the lemma is crucial. A point x* at which f(x*) =
0 is called a singular point (equilibrium point, stagnation point), of the vector field.
If x = u(y) maps a point y* into x* = u(y*), then

g= u;l fou
has a singular point at y = y* and the Jacobian is
8»()’*) = u;l fx(X*)”y

where u, = u,(y*). Thus the Jacobians f\(x*), g,(y*) at a stationary point are
similar. Hence the eigenvalues of f,(x*) are invariant and must be essential for
the vector field. In fact, they are basic for the stability theory of vector fields at a
singular point which was developed by Lyapunov.

It has to be mentioned that the above lemma is valid only “in the small” and
fails in large domains. This is illustrated by three simple examples in the plane:

(1) x=x; (@)X =—xp (i) X = x
szZXz XzZX] szZ—Xz.

The corresponding flows are plotted in Figure 1.2 and it is obvious that there is no

" PN
>< (Q> N

FIGURE 1.2

diffeomorphism taking any of these flows into any other—although this is possible
locally near any point different from the origin.

The properties “in the large” are of principal interest. Examples of such proper-
ties are the existence of singular points, of periodic orbits, their stability or instabil-
ity, etc., which will be investigated in these lecture notes.

Systems of differential equations of the form (1.1) are usually called autono-
mous to distinguish them from systems

dx
i fx,0)
which depend on ¢ as well, and are called nonautonomous. These systems can easily
be reduced to (1.1) by introducing xo = ¢ + constant as an independent variable so
that we obtain a system
%: , 4% fitxo,x), j=12,....n,

dt
in (n + 1)-dimensional space.
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Also systems of second order

d*x _ dx
az = 8\

can easily be reduced to (1.1), simply introducing x and dx /dt as independent vari-
ables. As a rule we will therefore assume that this reduction has been carried out
and study systems of the form (1.1). The domain D is called the phase space in
which we visualize the motion.

Examples. We illustrate this concept with some simple examples.

EXAMPLE 1. The differential equation
d2

x

. 1
— +sinx =0, xelR’,
dt?

describe the motion of a pendulum, where x denotes the angle of deflection from
the vertical.

FIGURE 1.3

The phase space in this case is the plane with coordinates x and X = Z—’t‘. Multi-
plying the equation by X and integrating we obtain the energy relation
1.,
—X“—cosx =FE
2
where E is a constant along each orbit. This equation defines a set of curves (see

Figure 1.4) on which the solutions travel.

FIGURE 1.4

Without determining the solutions explicitly (they are given in terms of elliptic
functions) we can read off the figure the nature of the motion: The oscillations about
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the down position is given by the islands, the motion of the pendulum swinging
over the top by the wavy lines on top and bottom and the “separatrices” which
describe a motion where the pendulum just goes from the top position, falls down,
and asymptotically returns to the top position.

Since x is an angle we should identify the points (x,x) and (x;,x;) if x —x; =
2rj, x —x; = 0 for any integer j. Thus the phase space becomes a cylinder and the
many “islands” are identified to one.

S
J

}

/f

[

-

FIGURE 1.5

EXAMPLE 2 (Geodesics on S?). The two-dimensional sphere S? can be given
by the equation
x2=x2+x2+x2=1

and the geodesics on it are the greatest circles. They are described by the differential
equation

d’x

dr?
where the scalar X is determined so that the equation |x| = 1 remains valid for all ¢.
This requires A = —|x|? since

= AX

2

and the differential equation becomes
P
dr?
where we have to restrict ourselves to
Ix*=1, (x,x)=0.

More precisely, if the last two conditions hold for ¢ = O then they hold for all ¢.
We see this by applying the uniqueness theorem for the initial value problem to the
system

+%%x =0

d*z
dr?

lx2—1
7

==2|%’z, z(0)=0, 20)=0

where we take z =
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What is the phase space in this case? If we set y = x, we have a system of first
order

1.7 =y, y=—lylx,
where |x| = 1, (x,y) = 0. Thus the elements of the phase space are the vectors y
attached at the points x € S2. The set of vectors

{(e,y) eR®: x| =1, (x,y) =0}

form a manifold which is called the tangent bundle T(S?) of the sphere. Thus T(S?)
is the phase space in this case.
The speed |x| = |y| is a constant along any solution since
dly |2 C e\ 2 _
Frak 2(y,y) = =2ly|"(y.,x) =0
and we may restrict ourselves to the case [x| = [y| =1 in which case ¢ is the arc
length. Then the phase space is given by

{(x,y) €RE: x| =1, (x,y) =0, |y| =1},

the unit tangent bundle 7;(S?) of the sphere. Clearly all solutions are periodic of
period 2.

To give a better picture of this flow and its phase space we show that T} (S?) can
be mapped one to one onto SO(3), the group of 3-by-3 orthogonal matrices U with
determinant +1 and the differential equation becomes

dU 1

(1.8) — =UA where A=
dt

S = O

0
0

oo o

The solutions of this system are clearly

cost —sint 0
(1.9) Ui)= U(O)e”‘ =U()| sint cost O
0 0 1

The required mapping is obtained as follows: For (x, y)eT (S?) we construct
the orthonormal frame x,y,z =x A y'

Uei=x, Uep=y, Ues=z;

i.e., x,y,z can be taken as the column vectors of U. Then writing U = (x,y,z) we

have
dU o
dt =(x~va)=(y’—X,0)=UAo

Thus both the representation of the differential equation (1.7) on the unit tangent
bundle 71(S?) and (1.8) on SO(3) are equivalent, in the sense that one can be trans-
formed into the other. This illustrates the concept of equivalence of vector fields, but
shows the lack of our previous definition, since we have to extend our concepts from
the local representation to the global one on manifolds. We return to the definition
of vector fields on manifolds later.

XA y denotes the vector product in R3.
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EXAMPLE 3 (Kepler problem in the plane). It is described by system

d*x X d*y y
1.10 T e e —_— = r2=x2 2.
(1.10) dt? r3 dt? r3 Ty
This system of second-order differential equations has as its phase space the four-
dimensional space R* (with coordinates x, y, %, y) minus the plane x = y = 0, where

the system is singular. This system possesses the energy integral
| P 1
—(x + _
2( y) p
which is constant, say E, along each orbit. It is well-known that the solutions corre-

spond to conic sections in the x, y plane; hyperbola for E > 0, parabolas for £ = 0
and ellipses for E < 0. Thus if we consider the energy surface

1, 5,01
(X" +y)—--=E <0
2 r

for a fixed negative E, all solutions are periodic and have, as it turns out, a fixed
period (namely 27 (—2E)~3/?).

In the course of this chapter we will show that after an appropriate change of
¢ and an appropriate compactification this flow of the Kepler problem on a fixed
negative energy surface is equivalent to the flow (1.9) of the geodesics on S2. In
particular, it will follow that the energy surface properly compactified is equivalent
to SO(3).

For the following we will extend the concept of equivalence of two vector fields

dx d dy

gy — 4 ad —o=gly)
in domains Dy and D,, respectively. We will say that f is equivalent in the extended
sense if there exists a diffeomorphism u : D, — D; and a positive function A =
A(y) € C"(D;,, R) such that
(1.11) g=hu;'fou.

The factor A = A(y) corresponds to a change of the independent variable. More
precisely, if the independent variable for the g-vector field is called s, i.e., if

dy

5 = 8(y)
and ¥/ is the corresponding flow, then we have
(1.12) Vi=ulogp'ou

where s and ¢ are related by

P = 555 = / AY° ()do .
0

This shows that the solutions of one system are mapped into those of the other with
a change of parametrization. We have clearly
ay’

d d
uyg(y*) = Uy—o = a(fﬁt ou)= Az(# ou)=Afog¢' ou
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showing (1.11). In other words, here we subject the vector field to the transformation

x=u(y), t=uv(s,Yy),
of the n + 1 dimension space R" x I. We will simply write
dr
ds
REMARK. We assume throughout that u € C", r > 1, but frequently one studies
also “topological equivalence” of vector fields when u is assumed to be a home-
omorphism only. In that case (1.4) losses meaning and topological equivalence is

defined through that of the flows (see (1.12)) and an appropriate ¢-transformation.
We will hardly be concerned with this concept and discuss it when it comes up.

A.

Exercises

EXERCISE 1.

(a) Show with the example ‘;—’t‘ = x? for x € R! that the flow ¢* is not defined
for all ¢.
(b) Show if in system (1.1) with D = R” and

|[f(x)] <M inR",

then ¢'(x) is defined for all real ¢.
(c) Show, if in system (1.1), with D = R"

|fx(x) <M inR",
then ¢’ is again defined for all real ¢.
EXERCISE 2.
(a) Let f(x)be a C!-vector field satisfying
f(x)=c for|x|>r,
(f(x),c) >0 forall x e R",

where c is a constant vector in R" and r a positive constant. Let ¢’, '
denote the flows corresponding to the vector fields x = f(x), y = g(y) =c.
Show that ¢’, " are defined for all ¢ and that

u=lim¢ oy’

t—00
is a diffeomorphism satisfying
g= uy‘1 fou.

(b) Use this result to give a proof of Lemma 1.1 by setting g(x) = ¢ and mod-
ifying f outside a small ball so that f = c there.



