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PREFACE

This new volume gathers results in pure and applied algebra including algebraic topology
from researchers around the globe.-The selection of these papers was carried out under the
auspices of a special editorial board.

In Chapter 1 the authors compute the Chen-Ruan cohomology rings of the weighted
projective spaces. a class of important spaces in algebraic geometry and physics. The classical
tools (Chen-Ruan cohomology. toric varieties, the localization technique) which have been
proved to be successtul are used to study the orbifold cohomology of weighted projective

spaces. Given a weighted projective space R/" . the authors determine all of its twisted

..... 7]
sectors and the corresponding degree shifting numbers. and they calculate the orbifold

cohomology group of P’ For a general reduced weighted projective space. they

determine the obstruction bundle over any 3-multisector and give a formula to compute the 3-
point function which is the key in the definition of Chen-Ruan cohomology ring. Finally they

concretely calculate the Chen-Ruan cohomology ring of weighted projective space P,;iim

James showed that a space X is an H-space if and only if there is a retractionr : QX X —
X. Then Stasheff showed that there is an H-map retraction of X if and only if the
multiplication of X is homotopy associative. Hemmi generalized this result to a theorem for
A,-spaces. In Chapter 2 the authors first study the relations between the structure of the
multiplication of an H-space and the one of retractions of the H-space in more detail. Then we
extend the results in [2] to a theorem for maps r;: QPX > X (I < i< n- 1) foranA,-
space X. where P;X is the projective i-space of X with P, X = £ X.

The best least squares fit A, to a matrix A in a space A can be useful to improve the rate
of convergence of the conjugate gradient method in solving systems Ax = b as well as to
define low complexity quasi-Newton algorithms in unconstrained minimization. This is
shown in Chapter 3 with new important applications and ideas. Moreover, some theoretical
results on the representation and on the computation of A, are investigated.

A pair of sign pattern row vectors (respectively, column vectors) allows orthogonality if
the two vectors are the sign patterns of two real orthogonal row vectors (respectively, column
vectors). A square sign pattern matrix that does not have a zero row or zero column is sign
potentially orthogonal (SPO) if every pair of rows and every pair of columns allows
orthogonality. In Chapter 4, the authors prove that when n is even. there is a k-regular SPO
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sign pattern of order n if and only if I £ k £ n: when n 6= 5 is odd, there is a k-regular SPO

sign pattern of order n if and only if 1 £ k £ nand k 6= 2: when n = 5. there is a k-regular

SPO sign pattern of order n if and only if k 6=2 and k 6= 3.

Partition problems are classical problems of the combinatorial geometry whose solutions
often rely on the methods of the equivariant topology. The k-fan partition problems
introduced in [11] and first discussed by equivariant methods in [2], [3] have forced some
hard concrete combinatorial calculations in equivariant cohomology [5]. [4]. These problems
can be reduced. by the beautiful scheme of Barany andMatousek. [2], to topological problems
of the existence of A, equivariant maps V(R Yy > Wa— U A(a) from a Stiefel manifold of

all orthonormal 2-frames in R3 to complements of appropriate arrangements.

In Chapter 5 the authors e present a set of techniques, based on the equivariant
obstruction theory, which can help in answering the question of the existence of a equivariant
map to a complement of an arrangement. With the help of the target extension scheme,
introduced in [5]. they are able to deal with problems where the existence of the map depends
on more then one obstruction. The introduced techniques. with an emphasis on computation,
are applied on the known results of the fan partition problems.
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Chapter 1

THE CHEN-RUAN COHOMOLOGY OF WEIGHTED
PROJECTIVE SPACES

Yunfeng Jiang*
Department of Mathematics. the University of British Columbia,
1984 Mathematics Rd, Vancouver, BC, V6T 122, Canada

Abstract

We compute the Chen-Ruan cohomology rings of the weighted projective spaces.
a class of important spaces in algebraic gecometry and physics. The classical tools
(Chen-Ruan cohomology, toric varietics. the localization technique) which have been
proved to be successful are used to study the orbifold cohomology of weighted pro-
jective spaces. Given a weighted projective space Py ... . . we determine all of its
twisted sectors and the corresponding degree shifting numbers, and we calculate the
orbifold cohomology group of P .. . Fora general reduced weighted projective
space., we determine the obstruction bundle over any 3-multisector and give a formula
to compute the 3-point function which is the key in the definition of Chen-Ruan co-
homology ring. Finally we concretely calculate the Chen-Ruan cohomology ring of

Key Words: Chen-Ruan cohomology, twisted sectors, toric varieties, weighted projective
space, localization

1 Introduction

The notion of Chen-Ruan orbifold cohomology has appeared in physics as a result of study-
ing the string theory on global quotient orbifold. (see [10] and [11]). In addition to the usual
cohomology of the global quotient. this space included the cohomology of so-called twisted
sectors. Zaslow [25] gave a lot of examples of global quotients and computed their orbifold
cohomology spaces. But the real mathematical definition of orbifold cohomology was given
by Chen and Ruan [6] for arbitrary orbifolds. The most interesting feature of this new coho-
mology theory, besides the generalization of non global quotients. is the existence of a ring

“E-mail address: jiangyf@math.ubc.ca



2 Yunfeng Jiang

structure which was previously missing. This ring structure is obtained from Chen-Ruan’s
orbifold quantum cohomology construction (see [7]) by restricting to the class called ghost
maps. the same as the ordinary cup product may be obtained by quantum cup product.
Since the Chen-Ruan cohomology appeared. the problem of how to calculate the orbifold
cohomology has been considered by several authors. Chen and Ruan [6] gave several sim-
ple examples. Chen Hao [4] computed the orbifold cohomology group of moduli space
Mo.n/Sn. B.Doug Park and Mainak Poddar [22] considered the Chen-Ruan cohomology
ring of the mirror quintic. All the above examples are orbifold global quotients. In this
paper we calculate the Chen-Ruan cohomology rings of weighted projective spaces-a large
class of non-global quotient orbifolds.

A very power tool to compute the Chen-Ruan cohomology of weighted projective
spaces is the method of toric varieties. The theory of toric varieties establishes a classi-
cal connection between algebraic geometry and the theory of convex polytopes. From the
fan of a toric variety, we can obtain a lot of information about the toric variety. In particu-
lar, when the fan ¥ of a toric variety X is simplicial, the toric variety X is an orbifold with
finite abelian groups as local groups. In this paper. we take the weighted projective spaces
as simplicial toric varieties with local isotropy groups the finite cyclic groups. And then
using the properties of toric varieties induced from the fans. we calculate the Chen-Ruan
cohomology group of any weighted projective space.

To calculate the Chen-Ruan cohomology ring of the weighted projective space. we use
the Riemann bilinear relations for periods [15] to identify the obstruction bundle. Up to
now, except that the obstruction bundle for the mirror quintic example calculated by Park
and Poddar [22] is a nontrivial line bundle. all the other calculated obstruction bundles of
the examples are trivial. In this paper. the obstruction bundle we consider is the Whitney
sum of some line bundles. generalizing the case of mirror quintic example. And we also
introduce the localization techniques [3] which should work for toric varieties to compute
the 3-point function which is the key in the orbifold cup product [6]. In particular, we give
a concrete example.

On the other hand, a very interesting aspect of calculating the Chen-Ruan cohomology
rings of weighted projective spaces lies in a conjecture of Ruan. In string theory, physicists
suggest that the orbifold string theory of an orbifold should be equivalent to the ordinary
string theory of its crepant resolution. For the orbifold cohomology. the Cohomology Hy-
perkahler Resolution Conjecture of Ruan (see [23]) states that the Chen-Ruan cohomology
ring of an orbifold should be isomorphic to the ordinary cohomology ring of its hyperkahler
resolution. I hope that my calculation of the Chen-Ruan cohomology ring of the weighted
projective space may contribute to this interesting problem.

The thesis is outlined as follows. Section 2 is a review of some basic facts concerning
orbifold, Chen-Ruan cohomology and simplicial toric varieties. In section 3 we introduced
the basic concept of the weighted projective space. In section 4 we discuss the Chen-Ruan
cohomology group of any weighted projective space. And in the section 5 we compute the
ring structure of the Chen-Ruan cohomology of the weighted projective space.
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2 Preliminaries

2.1 Orbifold and Orbifold Vector Bundle

Definition 2.1.1. An orbifold structure on a Hausdorff, separate topological space X is
given by an open cover U/ of X satisfying the following conditions.

(1) Each element U in U is uniformized. say by (V, G, m). Namely. 1" is a smooth
manifold and G is a finite group acting smoothly on V" such that U = V/G with 7 as the
quotient map. Let Ker(G) be the subgroup of G acting trivially on 17

(2) For U C U. there is a collection of injections (V', G, 7' ) — (V, G, 7). Namely.

; ; ; - - F ol s P s
the inclusion 7 : U' C U can be lifted to maps ¢ : V' — V and an injective homomorphism
: i 3 ; . . 5 i - ; T s
i, + G’ — G such that 7, is an isomorphism from Ker(G ) to Ker(G) and 7 is i,-

equivariant.
(3) For any point x € Uy N Us, Uy, Us € U, there is a Us € U such that x € Uz C
Uy NUs.

For any point = € X, suppose that (V, G, 7) is a uniformizing neighborhood and T €
771(r). Let G, be the stabilizer of G at T. Up to conjugation., it is independent of the choice
of T and is called the local group of x. Then there exists a sufficiently small neighborhood
1% of T such that (V,, G, 7,) uniformizes a small neighborhood of x, where 7, is the
restriction 7 | Vi (Vi G, m,) is called a local chart at x. The orbifold structure is called
reduced if the action of G, is effective for every .

Let pr : E — X be arank k complex orbi fold bundle over an orbifold X ([6]). Then
a uniformizing system for E | U = pr~!(U) over a uniformized subset U of X consists of
the following data:

(1) A uniformizing system (V, G, ) of U.

(2) A uniformizing system (V' x CX, G, %) for E | U. The action of G on V x CF
is an extension of the action of G on V' given by ¢ - (x,v) = (¢ - x, p(x,g)v) where
p:V x G — Aut(CF) is a smooth map satisfying:

plg-x,h)op(x,g) = p(x,hg),g,h € G,x € V.

(3)The natural projection map pr : V' x CK — V satisfies 7 o pr = pr o 7.

By an orbifold connection A on E we mean an equivariant connection that satisfies
A = g~t A g for every uniformizing system of E. Such a connection can be always
obtained by averaging an equivariant partition of unity.

2.2 Twisted Sectors and Chen-Ruan Cohomology

The most physical idea is twisted sectors. Let X be an orbifold. Consider the set of pairs:

X = {(P, (g)Gp)lp €X,g= (g1, " y9k), 9i € GP}
where (g)c, is the conjugacy class of A-tuple g = (g1, , g) in G),. We use G* to denote
the set of A-tuples. If there is no confusion, we will omit the subscript G, to simplify the no-
tation. Suppose that X has an orbifold structure I/ with uniformizing systems ((7, Gu, 7).
From Chen and Ruan | 6], also see [18], we have: ,‘2,‘. is naturally an orbifold, with the gen-
eralized orbifold structure at (p, (g)c,) given by (V#,C(g), 7 : Vi# — V;£/C(g)). where
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VE=VI NV Cg) = Cgr) N+ Cgk). Here g = (g1, ,gr). V) stands for
the fixed point set of g in V,,. When X is almost complex, X, inherits an almost complex
structure from X, and when X is closed. \7; is finite disjoint union of closed orbifolds.

Now we describe the the connected components of Xj. Recall that every point p has
a local chart (V,, Gp. m,) which gives a local uniformized neighborhood U, = m,(V},). If
q € U,. up to conjugation there is a unique injective homomorphism 7, : G4 — G,. For
g c (Gq)"'. the conjugation class i,(g), is well defined. We define an equivalence relation
i.(g8)g = (g)g. Let T, denote the set of equivalence classes.To abuse the notation, we
use (g) to denote the equivalence class which (g), belongs to. We will usually denote an
element of T by (g). Itis clear that 5:; can be decomposed as a disjoint union of connected
components:

(g)ET)

Where X ) = {(p, (g))lg € (G, (g), € (g)}. Note that forg = (1,--- ,1), we
have X(g) = X. A component X g is called a k — multisector. if g is not the identity.
A component of X, is simply called a twisted sector. If X has an almost complex,
complex or kahler structure, then X g has the analogous structure induced from X. We
define

T3 = {(8) = (91,92,93) € Tslg19293 = 1} .

Note that there is an one to one correspondence between 75 and T given by
(915 92) — (g1, 92, (9192) ).

Now we define the Chen-Ruan cohomology. Assume that X is a n-dimensional com-
pact almost complex orbifold with almost structure .J. Then for a point p with nontrivial
group G,. J gives rise to an effective representation p, : G, — GL(n,C). For any
g € G,. we write p,(g). up to conjugation, as a diagonal matrix

) omi g i a9
d, m - mg
iag | e 9 ,...,€ ‘

where my is the order of g in G, and 0 < m; ; < m,. Define a function ¢ : X; — Q by

n

B 177.1"9
up, (9)p) = ZZ g,
We can see that the function ¢ : AA] — Q is locally constant and ¢ = 0 if g = 1.
Denote its value on X, by ¢g. We call ¢4 the degree shifting number of X ). It has the
following properties:
(1) ¢(g) is an integer iff p,(g) € SL(n, C);
(2) t(g) + t(g-1) = rank(pp(g) — Id) = n — dimc X g).

A C* differential form on X is a G-invariant differential form on V for each uniformiz-
ing system (V, G, ). Then orbifold integration is defined as follows. Suppose U = V/G is
connected, for any compactly supported differential n-form w on U, which is, by definition,
a G-invariant n-form & on V,
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orb 1
/ e _,/;, (2.1)
Ju G| Jy-

Where |G| is the order of G. The orbifold integration over X is defined by using a
('™ partition of unity. The orbifold integration coincides with the usual measure theoretic
integration iff the orbifold structure is reduced.

Holomorphic forms for a complex orbifold X are again obtained by patching G-
invariant holomorphic forms on the uniformizing system (V, G, 7). We consider the Cech
cohomology groups of X and X g, with coefficients in the sheaves of holomorphic forms.
The Cech cohomology groups can be identified with the Dolbeault cohomology groups of
(p, q)-forms [2].

Definition 2.2.1. ([6]) Let X be a closed complex orbifold, we define the orbifold coho-
mology group of X by

ovb @ Hd‘ul(q) ‘\(_j Q)

(9)€Th

For 0 < p,q < dimcX. we define the orbifold Dolbeault cohomology group of X' by

Hy3(X) = P H 0170 (X, O)

orb
(g)eTh

2.3 The Obstruction Bundle

Choose (g)= (g1,92,93) € T3. Let (p, (g),) be a generic point in X(g)- Let K'(g) be the
subgroup of G, generated by g; and g». Consider an orbifold Riemann sphere with three
orbifold points (52, (p1, p2, p3), (k1, ko, k3)). When there is no confusion, we will simply
denote it by S?. The orbifold fundamental group is:

we(S?) = {A1, Ao, A3 A = 1, A dodg = 1}

Where \; is represented by a loop around the marked p;. There is a surjective homo-
morphism
p: (5% — K(g)

specified by mapping \; — g;. Ker(p) is a finite-index subgroup of 7§7(5?). Let s
be the orbifold universal cover of S?. Let & = i/]\'er(p). Then ¥ is smooth, compact
and /K (g) = S°. The genus of ¥ can be computed using Riemann Hurwitz formula for
Euler characteristics of a branched covering, and turns out to be

|K(g)l
l\'i
K (g) acts holomorphically on X and hence K (g) acts on H%!(X). The “obstruction bun-
dle” E(g) over X(g) is constructed as follows. On the local chart (V;¥, C(g), ) of X (g
E\g) is given by (T'V, ©® H®} ())& x Vi — V& where (TV, © H* (X)) (®) is the
K (g)-invariant subspace. We define an action of C'(g) on TV, @ H*!(X), which is the

(2+|K(g)| - =,

g(X) =

) (2.2)

o] =
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usual one on 7'V}, and trivial on H*!(X). The the action of C'(g) and A'(g) commute and
(ITV,® HO%1(£))M®) js invariant under C'(g). Thus we have obtained an action of C'(g) on
(TV, o HON(S))M &)« 178 — V& extending the usual one on V;¥. These trivializations
fit together to define the bundle E 4 over X(g). If we set e : X(g) — X to be the map
given by (p, (g)p) — p. one may think of E(g) as (¢"TX © H%(X))(®) The rank of
E g is given by the formula [6]:

rankc(Eg)) = dimc(X(g)) — dimc(X) + Z3_(g,) (2.3)

2.4 Orbifold Cup Product

First. there is a natural map [ : X,y — X (4-1) defined by (p, (9)p) — (ps (g_l)],).

Definition 2.4.1. Let n = dimc(X). For any integer 0 < n < 2n. the pairing

< o HE (X)) x H (X)) — Q

orb

is defined by taking the direct sum of

<‘>(‘SI)_ H([-—?.I(y)(‘\v(g):Q) « H‘Z”_d“ll(”_l)(-\'(g—l):Q) Q

orb*
where

orb
< a,f >0 = / anI*(3)
‘\-(g)
fora € H’{‘Q’(g)(X(g):Q). and 3 € H'“)”"d““)’m—l)(:X(g_l); Q).
Choose an orbifold connection A on E(g). Let €.4(E(g)) be the Euler form computed
from the connection A by Chen-Weil theory. Let n; € H‘IJ(X(QJ_,:Q). for j = 1,2,3.
Define maps €j - ‘Y(g) - ‘\7(_(1_,) by (p~ (g)p) — (p, (gj )11)'

Definition 2.4.2. Define the 3-point function to be

orb
< N1, M2, M3 Sordi= / eim A ey Aexnz Aes(Eg)) (2.4)
X(g)

Note that the above integral does not depend on the choice of A. As in the definition
2.4.1. we extend the 3-point function to H ,(.X) by linearity. We define the orbifold cup
product by the relation

<M1 Yors M2, M3 = orb:=< 01,72, M3 >orb <25)

Again we extend Uy, to H) ,(X) via linearity. Note that if (g) = (1,1,1). then

N1 Uorp 12 18 just the ordinary cup product 1; U 10 in H*(X).
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2.5 Simplicial Toric Varieties as Orbifolds

A toric variety is a normal variety with an action of an algebraic torus which admits an
open dense orbit homeomorphic to the torus. Every toric variety is described by a set of
combinatoric data, called a fan = in a lattice N, [13]. [20]. = is simplicial if every cone o
in Z is generated by a subset of a basis of R" = N © R.

We now describe the orbifold structure of simplicial toric varieties. see Poddar [20].
Let = be any simplicial fan in a n dimensional lattice N. X= be the corresponding toric
variety. For a cone 7 € Z. denote the set of its primitive |-dimensional generators by 7[1].
the corresponding affine open subset of X= by U-. and the corresponding torus orbit by O.
We write ¥ < 7 if the cone v is a face of the cone 7. and »» < 7 if it is a proper subface.
U; = U,<70,. Let M = Hom (N, Z) be the dual lattice of IV with dual pair <, >. For any
cone 7 € =. denote its dual cone in M/ © R by 7. Let S- = #NAL. C(S;) is the C-algebra
with generators " for each m € S, and relation \”’\’”, = \’”+"'l. U; = Spec(C[5+]).

Then the orbifold structure of the toric variety X'z can be described as follows. Let o be

any n dimensional cone of =. Let vy, - -+ , v, be the primitive 1 dimension generstors of o.
These are linearly independent in Ng = N © R. Let N, be the sublattice of N generated
by v1,-++,v,. And let G, = N/N, be the quotient group. then G is finite and abelian.

Leto be the cone o regarded in N,. Let & be the dual cone of & in M. the dual lattice
of Ng. U r = spcc(C[él N AL]). Note that ¢ is a smooth cone in Ny. So i =207,
Now there is a canonical dual pairing M, /M x N/N, — Q/Z — C*, the first
map by the pairing <, > and the second by ¢ — exrp(27ig). Now G, acts on C[A,]. the
group ring of M. by: v(\") = exp(2mi < u,v > )%, forv € N and u € M,,. Note that

(C[M,))% = C[M] (2.6)

Thus G, acts on U_. Let 7, be the quotient map. Then U, = U, /Gs. SoUs is
uniformized by (U,_/. G4, 7,). For any 7 < o. the orbifold structure on U7 is the same as
the one induced from the uniformizing system on U,. Then by the description of the toric
gluing it is clear that {(U_/,G,,7,) : o € E[n]} defines a reduced orbifold structure on
X=. We give a more explicit verification of this fact below.

Let B be the nonsingular matrix with generators vy, --- , v, of o as rows. Then g is
generated in A/, by the column vectors v1, - - -, v of the matrix B~!. So \”l. coo " are
the coordinates of U_. Forany k = (k1,--- k) € N. the corresponding coset [k] € Go
acts on U/ in these coordinates as a diagonal matrix: diag(exp(2micy), - -, exp(2micy)).
where ¢; =< k.o’ >. Such a matrix is uniquely represented by an n-tuple a =
(ai,--- ,an) where a; € [0,1) and ¢; = a; + b;,b; € Z. In matrix notation, kB~! =
a+b =k = aB 4+ bB. We denote the integral vector aB in N by k, and the diagonal
matrix corresponding to a by g,. ks —— g, gives a one to one correspondence between the
elements of GG, and the integral vector in N that are linear combinations of the generators
of o with coefficient in [0, 1).

Now let us examine the orbifold chart induced by (U_/, G, 7,) at any point p € U,.
By the orbit decomposition. there is a unique 7 € = such that p € O,. We assume 7 is
generated by vy, -+ ,v;,j < n. Then any preimage of p with respect to 7, has coordinates
' =0iffi < J. Letz = (0,...,0,zj41,...,2,) be one such preimage. Let G, :=
{9 € Gy :a; =0if j+1<i < n}. We can find a small neighborhood 11~ C (C*)"~J
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Of (Zj4050 094 -, ) such that the inclusions C/ x 117 — U, and G; — (i induces an
injection of uniformizing systems (C/ x W, G, 7) — (U_/,G4,m,) on some small open
neighborhood U, of p. So we have G}, = G and an orbifold chart (C/ x 11, G, 7). Note
that G+ can be constructed from the set {k, = ©/_ a;v; : kq € N,a; € [0,1)} which is
completely determined by 7 and hence is independent of o.

3 The Weighted Projective Spaces

3.1 The Definition and the Orbifold Structure of the Weighted Projective
Space

Throughout this paper. a(p) fora € Candp = (p1.- -+ ., pp) € Z" will denote the diagonal
matrix:
Diag(aP* .-+ ,aP™)

with diagonal entries ¢”*, i = 1,--- , n. Moreover. for an integer q. ¢, will denote the group

Z/qZ.

Definition 3.1.1. ([14]) Let Q@ = (qo,--- .¢n) be a (n 4+ 1)-tuple of positive integers. The
weighted projective space of type Q. P"(Q) =Py ., is defined by
P! . ={z€(C)):~Aq) . AeC"}

q0." Gy

where A(q) = Diag(A\%,---  \9m).

Remark 3.1.2. (1)The above C*-action is free iff ¢; = 1 for every ¢ = 0,--- ,n; (2) If
ged(qo, -+ yqn) = d # 1. then P;}O’,,, is homeomorphic to Pgo/d‘__, ‘q”/(,(by identification
of A with \).

Weighted projective spaces are, in general, orbifolds where the singularities have cyclic
structure groups acting diagonally. Moreover, if all the ¢/s are mutually prime, all these
orbifold singularities are isolated. In fact, as is usually done for complex projective spaces,
we can consider the sets

yqn

Us={lzlo €P 4 iz #0} CPL

sgn s4n

and the bijective maps o; from U; to C™ /14, (Q;) given by

X B Z0 7 “n
oi([z]o) = (W PP (:i)Qn/(Ix>q

where (z;)1/% is a g;-root of z; and (-)q
acting on C" by

1

is a p;-conjugacy class in C" /g, (Q;) with pig,

1 i

§-2=8(Qi)z,§ € g,
Here Q; = (g0, ,qis=** yqn). Thenon 0;(U; NU;) C C"/ g, (Qi),

_ z Zi 1 z
Ojooil((Zl-"'~3wz)qz):((~,_O_~"‘»—Jw--., - >

J)qo/rlj - (:J»)qi/qj ’ ’ (25 )an/4;
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3.2 Toric Structure of the Weighted Projective Spaces

Given Q = (qo,- - ,

qn) € Z"M et d;, ... ;. = ged(qiy, -+ ,qi.) and dj = ged(qo. -+ Qjs e qn) (1m0 s
issj € {1.---.n}). Define a grading of C[Xo.---,X},] by degX; = ¢;. We denote this
ring by S(Q). Then Py . .~ = projS(Q) is the weighted projective space of type Q.
P is covered by the affine open sets D4 (X;) := specS(Q)x,. (i = 0,....n). The

G0+ «Gn

monic monomials of S(Q)x, are of type A\TIH#,-‘\'J’.\»’. where lg; = ¥;+;\jq; and [, A;
are non-negative integers. So each such monomial is uniquely determined by the n-tuple
(Aos s Ai1, Aitls - -+ » Ap) Of its non-negative exponents. The exponents occurring are
just the points lying in the intersection of the cone e := pos{ey,--- ,e,} and the lattice
No.q © 2" that is defined as follows.

Consider Q; = (¢o. -+ +qi- -+ .qn) as an element of Homz(Z",Z) by setting:
Qi(ay, -+ ,an) == goay + -+ , +qnan
Z" being equipped with its canonical basis. Let m; : Z — Z,, denote the canonical
projection. Then
Noyg, :=Ker(Z" — Z — Z,)
is a sublattice of Z". Denote by M ; the dual lattice. We have an isomorphism of semi-
group rings
S(Q)x,) = CleN Ngg,l
revealing D (.X;) to be the affine toric variety associated with € with respect to Mg 4,

Proposition 3.2.1. (/5]) Let C; = (c},-+-.c) be a basis of Ng, and denote by
ri.-- 1, the row vectors of Ci. Let o := pos{ri.--- ,rL}. Then there is an isomor-
phism of semigroups

6’,’ N Zn ~eéen ‘\’Q*Qi .

Proposition 3.2.2. (/5]) With the natation introduced above, the matrix

90 o ... 0
do1 Cll‘_’ Cin U]
0 Gdu ... 0 Uo
do12 2n = 0
Cy = . . . . = . = (Cij)
0 0 7 F— Un
is a basis of Ng 4, where C?J € Z=q are determined as follows. For fixed j € {2,....n}

0 ciinnsacivel B d o 2 i 555 .. 0 ) iy i
ij successively for i = j —1,....1 by requiring €y € Z¢ to be minimal with

the property that

construct ¢

J
0
€i;9i + Z c,O,jq,, € ged(qoy s qi—1)L = do...; 1 Z.

r=i+1
Proposition 3.2.3. (/5]) With the notations introduced above, let vy := — S| %vi, pi =
Rogv;. Then the complete fan = determined by Z(1] = {po,--- ,pn} is the fan of the

weighted projective space Py, .. .
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Remark 3.2.4. (1) The weighted projective space Py .. , ~can also be constructed as fol-

lows. Given a fan Z = {ug, - .u,} so that goup + qruy + --- + gupu, = 0. then the
toric variety Xz is the weighted projective space Py .. . From above we can see that
{vg. -+ . v, } satisties the condition govg + q1vy + - - - + ¢ v, = 0. In fact. the proposition
3.2.2 and 3.2.3 gave a method to compute the fan of weighted projective space of type Q.
(2) If ged(qo, -+ . qn) = d # 1. from the construction of the matrix C(. we can see that
P a5, 200 PZO,/«/.-~- «a, /a ave the same fans. so they are homeomorphic.

3.3 Homogeneous Coordinate Representations of Weighted Projective
Spaces Induced from Toric Varieties

In this section we use the theorem of David Cox (see [9]) to represent the weighted pro-
Jective space Py . - as the geometric quotient (C+1)*/C*. From the theorem of David
Cox in [8]. for a fan =, the toric variety X'z is a geometric quotient (C)"\Z/G iff = is
simplicial. where 7 is the number of the 1-primitive generators.Z is a subvariety of C". GG is
some subgroup of (C*)". To give this representation for the weighted projective space. we

must compute the space Z and the group G. Let = = {wy, - - , v, } be the fan of weighted
projective space Py . . Then there are n + 1 I-dimensional primitive generators. which

give variables &g, - - - , x),. Furthermore. the maximal cones of the fan are generated by the
n-element subsets of {vg, -, v, }. It follows from [9] that

Z =V(zo, -+ ,xn) = {(0,:++,0)} c C*H1
Now we describe the group G. From [9].
G = {(uo,-++ ,ptn) € (C*)”+l|H;-’:11;1;:"1‘L'i> = 1,forallm € Z”}

However it suffices to let m be the standard basis elements ey,---,e,. Thus
(,“(% e a,“n) € Giff

n <e1.ri> __ n <ez,ri> __ _ n <en,r;i> __
I o p; =L opu; = ... =1L ou; =1 (3.1)
From proposition 3.2.3, we have the vectors vy, - ,v,. and vg = =X, L, s0 we
n ES
have:
~4L do (_iLC(l)q_ﬁ:‘_’QL 0 oy
c 2 dg1o > 1012
Lo 01 'u]()l = i 90 904012 ﬂ]l—ﬂém_ —_ .. =
(—L O 920 ... _gndn y 0 _dn
— . q0 17 qg 2n q90dQ...n Cin . Cn—1,n dg..., __ 1
= Ky Hy Hp—1 in -
So
- 28
01 __ 01

/J'() - ,ul )
9.0 4 g2d91 dop
( 0013+qo¢1012) _ Y s,

o = py et
A0 420 4 .4 gndn 0 d
(go Clntgaant -+ 452) 9. Cp1m . Tooem
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