 Proceedings

of the Society
Jore

 EXPERIMENTAL
. MECHANICS &



Proceedings
of the Society
for

EXPERIMENTAL
MECHANICS

(Formerly the Society for Experimental Stress Analysis)

VOLUME XLI

K.A. Galione, Publisher
M.E. Yergin, Editor

COPYRIGHT® 1984 BY SOCIETY FOR EXPERIMENTAL MECHANICS
(FORMERLY THE SOCIETY FOR EXPERIMENTAL STRESS ANALYSIS)
14 FAIRFIELD DRIVE

BROOKFIELD CENTER, CT 06805

Printed in U.S.A., 1984



Proceedings

of the Society
for Experimental
Mechanics



President
W.N. SHARPE, JR.

The Johns Hopkins University

President-Elect
R.J. RINN
Measurements Group, Inc.

Vice-President
I.M. ALLISON
University of Surrey

Treasurer

D.L. WILLIS
Allison Gas Turbine
Division—GMC

Managing Director
K.A. GALIONE
SEM Headquarters

Chairman
R.J. RINN

Measurements Group, Inc.

Secretary
K.A. GALIONE
SEM Headquarters

D.A. DILLARD
University of Missouri

J.F. DOYLE
Purdue University

B.C. DYKES
The Boeing Company

S.K. FOSS

John Deere Technical Center

SEM Executive Board

S.K. FOSS
John Deere Technical Center

W.L. FOURNEY
University of Maryland

A.S. KOBAYASHI
University of Washington

J.B. LIGON
Michigan Technological University

R.H. MARLOFF
Westinghouse R&D Center

S.E. SWARTZ
Kansas State University

W.M. MURRAY
Honorary President

Editorial Council

D.H. MORRIS
Virginia Polytechnic Institute
and State University

C.E. PASSERELLO
Michigan Technological University

J.W. PHILLIPS
University of Illinois

R.J. SANFORD
University of Maryland

D.L. WILLIS
Detroit Diesel Allison—GMC

W.N. SHARPE, JR.
The Johns Hopkins University
ex officio

Papers Review Committee

Chairman
D.H. MORRIS

Virginia Polytechnic Institute

and State University

D.B. BARKER
University of Maryland

C.W. BERT
University of Oklahoma

G.L. CLOUD
Michigan State University

C.W. HARRIS
Texas A&M University

W.H. PETERS III
University of South Carolina

P.K. STEIN
Stein Engineering Services, Inc.

J.L. TURNER
Auburn University



Notice: The opinions expressed on the following
pages are those of the individual authors and do not
necessarily represent the ideas of the Society for
Experimental Mechanics.

Viii



Contents

Officers and Committees Of the SOCIEtY . . ... ittt et et e e e e e e e e e e e e e vii
Separation of Dynamically Induced Low-frequency Stresses in Rods and Pipes 1
GORAN PAVIC

An Experimental Method for Determining the Dynamic Contact Law 10
JAMES F. DOYLE

Application of the Least-squares Method to Elastic and Photoelastic Calibration of Orthotropic Composites 17
R. PRABHAKARAN AND R.G. CHERMAHINI

Transient Thermal Stresses in a Strip with an Eccentric Hole 22
T. IWAKI AND K. MIYAO

A Method to Simplity the Strength Design of Bolted Joints—Case of Connecting-rod Bolts 28
MASAYA HAGIWARA

A Biaxial Stress Transducer for Fabrics 33
R.B. TESTA AND W. BOCTOR

On the Sensitivity of the Fringe-interpretation Technique in Laser Holographic-interferometry Measurements 40
T.R. HSU AND R. LEWAK

Surface Curvature Analyzed with a Grid-reflection Technique 44
VINCENT J. PARKS

Stresses in a Quasi-isotropic Pin-loaded Connector Using Photoelasticity 48
M.W. HYER AND D. L.IU

Resistance-foil Strain-gage Technology as Applied to Composite Materials 54
M.E. TUTTLE and H. F. BRINSON

The losipescu Shear Test as Applied to Composite Materials 66
DISCUSSION BY MIRCEA ARCAN

Moiré Interferometry with +=45-deg Gratings 68
R. CZARNEK AND D. POST

Residual Stress and Warp Generated by a One-sided Quench of an Epoxy-resin Beam 75
Y. MIYANO. M. SHIMBO AND T. KUNIO

Impact-tension Compression Test by Using a Split-Hopkinson Bar 81
KINYA OGAWA

Photoelastic Study of Axially Loaded Thick-notched Bars 86
DISCUSSION BY ROWLAND RICHARDS. JR.

An Experimental Investigation on Isoclinic Parameters in Viscoelastic Materials Under Cyclic Stresses 87
H. TOBUSHI. Y. NARUMI. Y. OHASHI AND W. NAKANE

Strains in Flat Plates from Moiré-displacement Patterns 93
B.B. RAJU. B.S. WEST AND A.J]. PIEKUTOWSKI

A Modified Instrumented Charpy Test for Cement-based Composites 102
V.S. GOPALARATNAM. S.P. SHAH AND R. JOHN

Deformation Measurement During Powder Compaction by a Scanning-moiré Method 112
Y. MORIMOTO AND T. HAYASHI

Two-dimensional Fluid-velocity Measurements by Use of Digital-speckle Correlation Techniques 117
Z.H. HE. M.A. SUTTON. W.F. RANSON AND W.H. PETERS

Effects of R-Ratio on Crack Initiation at External Discontinuities in Autofrettaged Cylinders 122
ROBERT R. FUJCZAK

Validity of Compliance Calibration to Cracked Concrete Beams in Bending 129
S.E. SWARTZ AND C.G. GO

Development and Characterization of Orthotropic-birefringent Materials 135
[.M. DANIEL. G.M. KOLLER AND T. NIIRO

Impact Response of a Circular Membrane 144

CHRISTOPHER L. FARRAR



Photoviscoelastic Analysis of Thermal Stress in a Quenched Epoxy Beam
S. SUGIMORI, Y. MIYANO AND T. KUNIO

Hole-shape Optimization in a Finite Plate in the Presence of Auxiliary Holes
K. RAJAIAH AND N.K. NAIK

Nondestructive Residual-stress Measurement on the Inside Surface of Stainless-steel Pipe Weldments
C.0. RUUD. P.S. DIMASCIO AND D.M. MELCHER

Isopachic Contouring of Opaque Plates
D. POST. R. CZARNEK AND A. ASUNDI

Mode III Stress-intensity Factors in Cracked Orthotropic Plates—An Analogy with Propagating Cracks in Isotropic Media
P.S. THEOCARIS AND H.G. GEORGIADIS

New Technique to Investigate Necking in a Tensile Hopkinson Bar
I..A. CROSS. S.J. BLESS. A.M. RAJENDREN, E.A. STRADER AND D.S. DAWICKE

Development and Calibration of a Dynamic-contact-force Transducer
D. GOLDAR, V.S. SETHI, O.P. KHURANA AND S.R. VERMA

The Delta-element Reusable Strain Transducer
THOMAS F. LEAHY

Buckling of a Spherical Dome in a Centrifuge
J.H. PREVOST, D.P. BODDINGTON. R. ROWLAND AND C.C. LIM

An Investigation of Fatigue and Fretting in a Dovetail Joint
C. RUIZ, P.H.B. BILLINGTON AND K.C. CHEN

Ultrasonic-shear-wave Measurement of Known Residual Stress in Aluminum
G.V. BLESSING, N.N. HSU AND T.M. PROCTOR

Shear Properties and a Stress Analysis Obtained from Vinyl-ester losipescu Specimens
J.L. SULLIVAN, B.G. KAO AND H. VAN OENE

Hybrid Experimental-Numerical Stress Analysis
DISCUSSION BY K.A. JACOB

Determination of Stress-intensity Factors of Fillet-welded T-Joints by Computer-assisted Photoelasticity
C.L. TSAI AND S.K. PARK

A Study of Flaw Identification in Adhesive Bonds Using a Technique of Impact Modification
V.H. KENNER. G.H. STAAB AND H.S. JING

Beam-quality Analysis of Surface Finish by Moiré Deflectometry
I. GLATT, A. LIVNAT AND O. KAFRI

Measurement of Residual Stresses by the Hole-drilling Method:
Influences of Transverse Sensitivity of the Gages and Relieved-strain Coefficients
MAIJID KABIRI

The Determination of the Components of the Strain Tensor in Holographic Interferometry
C.A. SCIAMMARELLA AND R. NARAYANAN

Further Developments in Determining the Dynamic Contact Law
JAMES F. DOYLE

A New Method for Measuring Impulsive Force at Contact Parts
SHINIJI TANIMURA

A New Application of the Differential Interferometry for Stress Analysis
HORST SCHWIEGER

The Resistance Strain Gage Revisited
C.C. PERRY

Use of Mixed-mode Stress-intensity Algorithms for Photoelastic Data
C.W. SMITH AND O. OLAOSEBIKAN

Stress Concentration in Machine Components with Complex Shape
HAMID S. AL-RUBEYE

Photoelastic-coating Analysis of Dynamic Stress Concentration in Composite Strips
K. KAWATA, N. TAKEDA AND S. HASHIMOTO

Nonuniform Residual-stress Measurement by Hole-drilling Method
MAJID KABIRI

Loads Between Disks in a System of Discrete Elements
A.J. DURELLI AND D. WU

Continuous Measurement of Material Damping During Fatigue Tests
P.W. WHALEY. P.S. CHEN AND G.M. SMITH

vi

150

157

162

169

177

184

187

191

208

218

223

232

233

243

248

257

265

271

277

286

308

316

328

337

342



Separation of Dynamically Induced

Low-frequency Stresses
in Rods and Pipes

Components of dynamically induced low-frequency

stresses which propagate axially in opposite directions

can be separated by measurements using
fairly simple procedures

by Goran Pavic¢

ABSTRACT—Expressions are evaluated with which the separa-
tion of oppositely propagating axial-stress components in rods
and pipes can be achieved from stress waveforms obtained at
different locations on the rod or pipe. The corresponding
measurement/processing procedures can produce either the
power spectra or the waveforms of these components.
Simplifications of basic procedures for waveform evaluation
are formulated whenever possible.

A few experiments are described which verify the analytical
results obtained theoretically and which also demonstrate the
applicability of the separation procedures.

List of Symbols

Variables

A = amplitude spectral density of propagating
stress waves

amplitude spectral density of decaying
stress waves

= velocity of wave propagation
axial distance

diameter

Young’s modulus

frequency

imaginary unit «/— 1

wave number

= gage length

integer

= radius of inertia

pipe-wall thickness

power or cross-spectral density
time

averaging interval

arbitrary variable

= amplitude

axial coordinate

flexural constant, eq (7)
constant, eq (8)

gage to neutral axis distance
gage spacing

= frequency band
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error
lateral displacement

shear coefficient

wavelength

Poisson’s number

axial displacement

mass density

axial stress on measurement location
angular frequency

I
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Operators

F
F—l
Im
Re

Fourier transform
Inverse Fourier transform
imaginary part

real part

time-average value
spatial-average value

_ = complex quantity

~ = approximate value

(Il

Il

< >

Indices

= pertaining to a specific value

= central

= decaying

flexural

nonpropagating

longitudinal

= middle

propagating

polar

axial

difference

negative-propagating
positive-propagating

at position 0

at position 1

at position 2

pertaining to measured quantity
= pertaining to nonmeasured quantity
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Introduction

Dynamical stresses occur in rods and pipes when
elastic waves take place. For a given rod (pipe) geometry,
these waves assume definite spatial forms (modes) which
are independent of the nature of wave excitation. The
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spatial distribution and the time history of the excitation,
however, determine the extent to which various modes are
excited. As a consequence, some modes do not need to
be excited at all.

Generally, two types of modes exist: propagating
modes, which preserve the wave amplitudes and carry net
mechanical energy, and nonpropagating modes, which
have the opposite features. When changes in the excita-
tion are not fast, i.e., at lower frequencies, two modes
dominate the wave motion: simple extensional (longitudinal)
and simple flexural modes. The term ‘lower frequencies’
applies to those frequencies at which the wavelengths are
much larger than the lateral dimensions of the rod or
pipe. The wave motion at lower frequencies takes place
only in the axial direction.

The axial-wave motion in rods (pipes) of finite length
always consists of two components traveling in opposite
directions simultaneously due to the combined effect of
primary wave generation and subsequent reflections at the
terminations. Simple measurement of stresses can reveal
only the total stress wave resulting from the superposition
of the two oppositely transmitted components. In a
number of situations, however, it would be advantageous
to measure just one of the components, i.e., to perform a
separation of the stress constituents. Such situations are
encountered when problems of structure identification or
diagnosis of stress origins arise.

A fairly simple yet sufficiently accurate procedure is
described, by means of which the desired separation of
the stress components can be achieved with the aid of
easily available measuring equipment. The procedure is
restricted to low-frequency stresses in uniform rods and
pipes where only simple longitudinal and flexural modes
are possible.

Stress-wave Representation

A general principle for the separation of wave com-
ponents is described in Ref. 1. This principle is based on
the assumption that the wave motion is strictly in the
axial direction of a wave guide, and that for each fre-
quency component of the wave there exists a definite,
single-value real wave number. The wave number can
depend on frequency in an arbitrary fashion, k = k(w).

Wave motion at a single frequency is usually described
in terms of complex amplitudes U, and U ., corresponding
to the + and — directions of propagation. The modulus
of the complex amplitude, |U|, is the actual physical
amplitude. The quantity tan™ {/m U/Re U} is the wave
phase at the reference time instant 1 = 0:

u(x,t) = U.exp[ i(wt —kx)] + U_exp[i(wt + kx)]
The physically realistic wave motion is simply the real part
of y,u = Re{u}.

Generally, the time histories of stress waves are not
harmonic. Expressed in terms of its frequency composites,

the total stress wave, being the sum of two opposite-
traveling components o. and o_, reads:

o(x,t) = o.(x,t)+o0-(x,1) (1)
where
0.(x,1) = |, Re{A.(w) expli(wt — kx)]}dw

Jo Re{A (w)expli(wi + kx)}dw @

g-(x,t)
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A. and 4. are the stress (complex) amplitude densities.
This means that an elementary-frequency constituent of
the stress, occupying an elementary-frequency width dw at
some frequency w,, has the amplitude |4 (w,)|dw and
the phase tan™' [/m A4 (w.)/ Re A (w.)].

The assumption of real wave numbers incorporated in
eq (2) implies the existence of propagating modes only.
To account for the possibility of nonpropagating modes,
two additional stress components, o.,, and o.,, are
introduced.

o

o.(x,0) = [, Re{B.(w)explivt - kx]}dw

® 3)
o.(x,1) = [, Re{B_(v)expliwt +kx]}dw

These are characterized by imaginary wave numbers
(Ref. 2, section 3.1) which correspond to the decaying
modal pattern of these components. The component o.;
decays in the positive axial direction. The component
o.; decays in the negative direction. The quantities
B.(w) and B_(w) are the amplitude densities of the non-
propagating components at the reference position x = 0.

If U(w) is the Fourier transform of a real function of
time u(t) (Ref. 3, section 3.1), then

U(w) = Flu(n)} = 5_ u(t) exp( —iwt)dr

Its inverse, F'{U(w)} = u(¢), can be obtained by the
integration over positive frequencies only:

o

FHUW)} = 5= | U(w) explivnde =

% J, RelU(w) exp(iwn)]dew

Since egs (2) and (3) hold identically for any ¢ and w, it
follows that the Fourier transforms of the stress com-
ponents are

Flo.(x,t)} = 7 A. exp(— ikx), 0 = Gga

Flo(x,0)} = 7 4_exp(ikx), 0. = 0,-

“)
F{o.(x,0)} = 7 B, exp(-kx), 0., = gy,

F{o.(x,0)} = 7 B_exp(kx), 0., = 04-

Relations (4) form the basis for the formulation of the
separation procedure.

Wave Numbers at Low Frequencies

The simple, ‘classical’, wave equation for homogeneous
thin rods yields a simple wave number - frequency de-
pendence for longitudinal mode (Ref. 2, section 2.5):

k= w/c cr = vE/p ()
It is based on the assumption of uniform stress distri-
bution over the cross section and does not account for the
effects of inertia caused by lateral contraction. If these
effects are included into the calculation (still assuming the
uniform stress distribution), a cross term called Rayleigh’s
correction appears in the wave equation, resulting in a
dispersive k- w dependence (Ref. 2, section 2.5):



(lJ/C(y

k =
\//1 - (Vrpo)z(w Ci‘)l

(6)

A five-percent deviation from eq (6) can be used as the
practical limit of the ability of eq (5) to determine the
upper frequency:

D U
Ju 20

VI

Consequently the lowest wavelength below which eq (5)
is not usable is determined by the following relationship:

A

s

= 20v

In other words, for circular solid rods of diameter D
(ro = D/2+/2), the simple - dependence eq (5) is sufficiently
accurate, providing the wavelength exceeds ~7vD. For
metal rods, this limit is twice the diameter. The same
five-percent criterion applied to pipes [r,, =
YaD, N1+ S/D,,)*] gives \>10vD,,. Thus for metal
pipes, the wavelength must be at least three times the
mean diameter.

To obtain an exact solution of the governing equation
for longitudinal wave propagation in rods (and thus an
exact k- w dependence), the assumption of uniform stress
distribution must be abandoned. The type of solution
then depends on the shape of the cross section. For
example in the case of a circular solid rod, the wave
number is given in terms of a combination of Bessel
functions (Pochhammer frequency equation, Ref. 2,
section 8.2).

An exact solution for flexural wave propagation also
depends on the shape of the cross section of the rod
(pipe). It turns out that an unlimited number of modes
are possible for both the longitudinal and flexural motions.
The lowest mode, however, is associated with the low-
frequency behavior as defined previously. This behavior
is described for flexural waves with a simple but dispersive
dependence (Ref. 2, section 3.1):

k = I'u\f‘w
1

QA = ——
NI Cy

k = a\w or

(7

The real wave number corresponds to propagating waves,
while the imaginary wave number corresponds to decaying
waves.

Several simplifying assumptions were employed to
obtain an equation of motion corresponding to eq (7):
(a) the strains in a rod subjected to flexure rise linearly
from the neutral axis (passing through the centroid of the
cross section), (b) the curvature of the rod is always small
and (c) the effects of rotary inertia and cross-sectional
shear are negligible. If the rotary inertia and cross-sectional
shear are taken into account, a solution for the wave
number - frequency dependence is obtained as (Ref. 2,
section 3.4):

k

1 \/“f"v \/ 1 =3\, wr 2 1+3 ,wr 2
_ Ly 1 Lryy )
. 3 +(—=—)( 5 )+ —— ()

Cy

2(1 +v)

X

B = ®)

which is in very good agreement with an exact solution

based on a rigorous application of the theory of elasticity.
The shear coefficient » depends on the cross section. For
example, it is 1.11 for a circular cross section.

The wave number k given by eq (8) tends toward the
value \/w/r,c; given by eq (7) where wr,/c, — 0. At low
frequencies where wr,<c, an approximation can be
derived from eq (8):

1 \/ wr,
ko= 7y ¢y 2 cy

1+ (u.)l'_y )z

ryCy 4 Cy

by means of which a criterion can be established for the
applicable limit of eq (7). If the five-percent accuracy
margin is invoked, the frequency below which the sim-
plified-dependence eq (7) is acceptable becomes:

- 0,1 x c

(YR P Y .

Tlx+20+v)] 7

and the corresponding minimum \/r, ratio reads:

AN _ 27 =2 x+2(1+v)
— === =27
ry kr»v 0,2 x

In other words for circular metal rods (r, = D/4), the
minimum wavelength to diameter ratio should be 6,42
if eq (7) is to be within the five-percent limit.

In the rest of the analysis of dealing with practical
measurement procedures, the validity of eqs (5) and (7) is
assumed. In no way, however, should these procedures be
restricted only to the low-frequency region if more
accurate k-w laws are accounted for. The only necessary
condition concerning their applicability is the occurrence
of wave motion in one axial mode.

Separation Procedure

At the present it is assumed that only propagating
components are contained in the wave motion. This
assumption, which is always valid for the longitudinal
mode at low frequencies, becomes realistic for the flexural
mode if the measurement location is a sufficient distance
(a couple of wavelengths) away from the terminations. If
this last condition is not fulfilled, a procedure described
in Appendix A may be employed to separate in measure-
ments the propagating from the nonpropagating wave
components.

From eq (4) and the linear properties of Fourier-trans-
form (FT) and differentiation operations, the following
relationships are obtained for the FT of the stress spatial
derivative do/ dx.

F{-l o} = r{-Lo}j+r{l o}~

ax

ik(=F{o.}+F{a.})

By taking the inverse transform of the last expression
divided by —ik, an expression for the difference of the
stress components is reached.

oyl do v _ o
{k ax e ©)

This expression makes their separation possible, providing
the stress gradient do/ dx is measured simultaneously with
the stress o itself.
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90_1)) (10)

ax

0. =1lox Fr (£ F{

Stresses are detected by measurement of strains. Strain-
gradient-sensitive transducers are not available. The
necessity for measurement of do/dx leads to an applica-
tion of finite-difference approximations:

gi . % [o(x+A/2,1) —o(x—A/2,0)] = IK(oz-o.)

A< (11)

The stress gradient is thus replaced by the difference of
stresses measured at two closely spaced points, 1 and 2,
located symmetrically about the reference position. 1t will
be shown that the accuracy of the approximation of eq
(11) depends on the value of product & A; the smaller this
product the higher the accuracy.

Denoting the measurement locations by 0,1 and 2 as
shown in Fig. 1, eq (10) takes an alternative form:

g, =ty
—2 0

Fo (% Flo,—a}) (12)

L
2A
which will serve as a basis for the stress-separation
procedure.

Bridge Arrangements

Measurement of stresses (i.e., strains) at three locations
as required by eq (12) is simply achieved by use of ordinary
strain gages wired into appropriate conditioning bridges.
Two gages are needed at each location (if longitudinal
and flexural motion exist at the same time), and should be
placed symmetrically about the neutral axis of the rod
(pipe). In this way the stresses can be detected, induced
either by the axial component of the motion or by the
flexural component. The sum of the strain equals the
double compression-induced stress component divided by
the Young's modulus, while the strain difference equals
the double flexure-induced stress divided by the Young’s
modulus.

Figure 2 shows schematically the gage connections
necessary for the separation procedure based on the
finite-difference approach. It can be seen that in both
cases the four outer gages are connected in a full-bridge
configuration, while the two middle gages are connected
in a half-bridge requiring two additional completion
resistors.

When only one of the motions exists (either longitudinal
or flexural), there is no necessity for two gages at each
location—one gage per location is sufficient. In that case
the corresponding bridge configurations are half-bridge
for the outer gages and quarter-bridge for the middle
gage.

Practical Measurement Procedures:
Spectral Densities

Equation (12) is not suitable for use in its direct form.
To implement this equation in any practical case, the
Fourier-transform (FT) operation has to be applied
twice—once direct, once inverse—to the measured data.
This necessitates the use of a signal analyzer which
incorporates a FT program. The analyzers available can
perform FT procedure over a very limited length of
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data. Short-duration transients only can be processed in
the way indicated by eq (12).

The power-spectral-density functions (PSD) of the
components &, and G. can be evaluated, however, without
limitations in all the cases where the stresses are of
random nature. By applying the definition of and the
addition laws for the PSD functions (Ref. 3, section 9.1),
the power-spectrum densities of the components @, and
¢ are found to be

$7. ()= Soo(w) + Sos(w) *

1
427k (w)

1
38k(a) Im {So,05(w)} (13)

o, stands for the stress difference 0, = 0, — a,.

The PSD function of either of the stress components is
seen to be a linear combination of the PSD of the total
stress, So,, the weighted PSD of the stress difference,
So., and the weighted cross-spectral-density function
between the total and the difference stresses, So,0,. Each
of these three spectral densities can be evaluated separately

on a signal analyzer.
The mean-square values, and thus the RMS values, of

the components 7, and 0. are easily obtained from the
PSD functions by integration (Ref. 3, section 9.1)

T x
e . 1 ~ l ( —
Uz(f)z :T[anZ—TS—TU:(’)Zd[ I? SO SO}(u})du-‘

(14)

Practical Measurement Procedures:
Waveforms

The waveform of either of the stress components,
generated by longitudinal wave motion, can be obtained
from measurements without any transformation pro-
cedure owing to the nature of the corresponding k-w
dependence. Since F{u(t)}/iw = F{{u(t)dt}, it follows
that the separation of compression-induced stresses
requires simply an integration operation instead of double
integral transformation:

<y b

_ 0o ¢y §
T = F oA V oa(t) dt (15)

Such an integration can be easily accomplished by use of
an analog electronic circuit during the measurement
process.

This simple separation procedure is not applicable to
flexure-induced stresses unless narrow-band frequency
measurements are made. In the latter case, the following
approximation holds.

Fi{LFo.} = A—QZF {LFo} =

— N9 | g, (1) dt
(64

The separation becomes governed by a formula analogous
to eq (15):

; _
Jo .. NG f
= ) * 2ol j UA(t)d’ (16)
This formula is valid only if the center frequency of the
band, w., considerably exceeds the effective band width,



Aw, i.e., if |w— w.] < w, throughout the effective band
range.

For the case of broad-band measurements of flexure-
induced stress components, no simplifications are possible,
and the separation must be conducted on the basis of
eq (12).

An alternative to the procedure based on eq (15) is to
measure the velocity of wave motion instead of stress
difference. The equilibrium equation for longitudinal
wave motion (Ref. 2, section 2.1),

¢ _ a0 _
ax:  ax %

is simply substituted into eq (15) where al/ A corresponds
to do’/dx to give an exact (not any more approximate)
expression for the components o, and o-.

.
¢ - % o e OF
T2 Ty G an

Thus instead of measuring the stress difference between
2 and 1, the longitudinal velocity at 0 can be measured in
order to obtain the two stress components. The last type
of measurement is probably more convenient when dealing
with compression-induced stresses since it neither com-
prises approximations nor requires any time integration.
It could however prove difficult to find velocity trans-
ducers which are sensitive enough to satisfy the require-
ments of such measurements.

Measurement Accuracy

There are various sources of inaccuracies accompanying
practical measurements based on eq (12). The most
important of these sources arise due to finite spacing
between strain gages, finite length of the gages and
instrumentation noise.

—The difference of stresses, o, — 0,, divided by the gage
spacing, A, is only an approximation of the stress
gradient dg/ dx.

—Strain gages which have to be used in measurements are
of finite length and consequently detect an average
value of stress along their length instead of detecting
the stress at one specific point.

—There is always unwanted electrical noise in measuring
equipment which contaminates readings.

The first two of these sources produce a measurement

bias, while the third one creates random error.

The measurement bias is examined in Appendix B. It
has been found that this quantity is frequency dependent.
The bias in measurement of compression-induced com-
ponents increases with the square of frequency, while
measurements of flexure-induced components produce
bias which rises linearly with frequency. The method
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Fig. 1—Measurement locations on a rod (pipe)

described underestimates the component being measured
(factor e_. in Appendix B) and is subjected at the same
time to the influence of the other stress component
(factor e _).

Under normal circumstances the gage length will be
much smaller than the gage spacing, A. Thus if condition
k A=<1 is ensured, the measurement accuracy will be
sufficient for most practical purposes (<two-percent
error). Too small values of kA are not convenient either:
the smaller the kA, the smaller the output signal from the
gage bridge measuring 0., and consequently the smaller
the signal-to-noise ratio. Therefore, an optimum spacing
should be adjusted for each particular measurement to
produce the bias comparable to the signal-to-noise ratio.

Experimental Results

Following the separation technique described, a few
experiments were carried out on a 4.7-m long copper
pipe of 25-mm diameter and 4-mm wall thickness. The
measurement location was 1.4 m away from one of the
ends. The gage spacing was A = 200 mm.

During the measurements the end of the pipe opposite
to the measurement location was either free or rigidly
attached to a steel plate, 1.8 m?, damped with an anti-
vibration coating. In this way two different boundary
conditions were achieved on this end: one without and
one with a loss of energy. The rigid attachment ensured a
complete transfer of the pipe motion to the plate, both
for longitudinal and flexural motions. Figure 3 shows a
schematic layout of the pipe with the plate.

The pipe was excited at the end nearer to the measure-
ment area. At this end the pipe was flattened and then
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Fig. 2—Strain-gage bridges for measurement of
compression-induced stresses (above) and flexure-
induced stresses (below).

s = signal, e = excitation, g = strain gage, r = completion
resistor, NA = neutral axis
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Fig. 3—Measurement of stress

components on a pipe.

a = pipe, b = damped plate, ¢ = strain-gage bridge
(Micro Measurements CEA-06-250 UW-120), d =
electrodynamic vibrator (Ling Dynamics 712)
Upper-right corner depicts side and top view of pipe
termination

b
a
o 4,7m
/S
N S N X AN 727w 7 N\

Fig. 4—Strain-gage bridges on pipe. Gages are indicated by arrows

rounded as shown in Fig. 3. In this way it became possible
to apply force either in the axial direction (for excitation
of longitudinal waves), or in the lateral direction (for
flexural waves). The same gages were used for measure-
ments of compression and flexure-induced stresses, but
different bridges were formed in each case by choosing
the corresponding wiring scheme from Fig. 2. Figure 4
reveals details of the measurement bridge wired for
compression-induced stress-component detection.

Integration, summation and differentiation of signals,
according to eqs (15) and (16), were done electronically
using custom-built analog circuits based on operational
amplifiers. In addition to the basic operation for evaluating
. and ., bandpass electronic filtering of measured
signals was included when measuring waveforms. The
objective of filtering was to extract only the desired
frequency portions of stresses from the toial stress time
histories. The filters used were tightly matched both in
amplitude and phase characteristics, which is essential
when comparing wavetforms. The measurement setup used
is shown in Fig. §.

Figures 6, 7, 8 and 9 show the waveforms of o), 0.
and the quantities which contribute to them obtained by a
single hainmer blow in the axial direction at the excitation
point of the pipe. The abscissa origin, ¢ = 0, coincides
with the beginning of the impact. In one case (Figs.
6 and 7) the filtering was broadband. In the other (Figs.
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8 and 9) it was medium band. Note that in cases without
damping, the stress component ! is just the inverse
replica of 3. shifted by a certain time interval. This
interval equals the travel time of stress from the measure-
ment position to the opposite end and back the same way
with the velocity ¢, (which was 3775 ms™' for the material
used). The change of sign in G.!is the result of the con-
ditions at the force-release boundary. In cases with
damping, a noticeable change between the outgoing and
returning stress components can be observed. Comparison
of Fig. 7 to Fig. 9 indicates that this change is pre-
dominantly due to more efficient absorption of higher
frequency components of stresses.

Figure 10 shows the same quantities as the previous
four figures, but obtained with a transversely applied
hammer impact producing flexure-induced stresses. The
damping plate was disconnected in this experiment. The
signals were passed through narrow, 150-250 Hz, band-
pass filters to make the simplified separation procedure
[eq (16)] applicable. The characteristic delay interval
between ¢/ and G/ corresponds to the group velocity of
flexural waves at the band-center frequency (200 Hz),
which in the given case equals 405 ms™' (¢, = 2w/k).

The pipe with free ends necessarily contains decaying
stress components in flexural wave motion. These have
an amplitude at the ends which equals the amplitudes of
propagating wave components (Ref. 2, section 3.1). Un-



ij

Fig. 5—Instrumentation setup.

a = bridge-conditioning amplifier (Honeywell Accudata 218), b = integrator,
¢ = low-pass hiter (Precision Filters LP 616), d = high-pass filter (Precision
Filters HP 6816), e = summation amplifier, f = difference amplifier, g =
instrumental tape recorder (Hcneywell 101), h = digital-event recorder
(Bruel Kiaer 7502). 1 = x/y plotter (Hewiett-Packard 7004 B)

Fig. 7—Same as Fig. 6 for pipe attached
to damped plate

like the amplitude of a traveling component which is
constant, the amplitude of a decaying component de-
creases by a factor e *? with the distance d from the end.
In the case considered, the decaying components at the
measurement location were an average of e®* = 5000
times smaller from the propagating ones (—54 dB), and
thus gave practically no contribution to the results.
Figures 11 and 12 show the PSD functions of flexure-
induced stresses produced by a shaker attached to the
excitation point and driven by random excitation of

constant spectral density. The spectra were evaluated by

an FFT analyzer, using eq (13). The peaks in the &/
spectrum indicate pipe resonances, which differ for the
cases with and without the plate as the attached plate
changes the dynamic properties of an otherwise free pipe.

The ratio of the 5/ and &/ PSD’s for undamped pipe-
end condition closely approaches the theoretically ex-
pected value of 1. The same ratio displays a frequency
dependence after attaching the plate and is always positive
as expected. Two pronounced peaks can be observed on
this plot. The plate itself has resonances at 158 and 248
Hz (detected from a separate plate moment-impedance
measurement) which explains the two peaks. This co-
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Fig. 6—Longitudinal, broadband
(200-6000 Hz) stress components in

free pipe: (1) o', &) L | oldt, @) 3,
(4) ot

| . -?' 10

ms

Fig. 8—Same as Fig. 6 for 2.5-6 kHz
frequency band (free pipe)

incidence simply indicates that a major energy transfer
from the undamped pipe to the damped plate occurs only
in the vicinity of the plate resonances. Such a conclusion
is well supported by theoretical consideration of energy
transfer from a force-type source of excitation.

Conclusions

Implementing the method for separation of low-
frequency, oppositely propagating stress components in
rods and pipes does not appear difficult. Power spectral
densities of these components can be evaluated from
measurements for any of the stress-wave types. Stress
waveforms, however, can be detected in a much simpler
way for compression-induced stresses than for flexure-
induced ones. Simple detection of the latter is restricted

Experimental Mecnanics * 7
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Fig. 9—Same as Fig. 8 for pipe attached
to damped plate
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Fig. 11—Power spectrum of flexure-inducec
stress in free pipe: (1) S o.f,(2) S 0. /S o_f

to narrow-band measurement conditions only. Experi-
ments demonstrate that ordinary equipment is sufficient
for the majority of possible applications of the proposed
method.
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APPENDIX A: Suppression of Decaying
Stress Components

In a general case of flexural motion of a pipe, the total
stress consists not only of the propagating components,
o}, o) = o). + 0l but also contains the decaying com-
ponents, ¢, o/ = o). + o4.. The Fourier transform of
the total stress is related in this case to the amplitude
spectral densities of the propagating A (w) and decaying
B(w) contributions as [eq (4)]
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Fig. 10—Flexure-induced stress
components in 150-250 Hz frequency

band (free pipe): (1) o/, (2)
3) o/, (4) 5/
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Fig. 12—Same as Fig. 11 for pipe attached
to damped plate

F{ Uj([)} = W(A'efl‘(],r+él_etk’x+ B.e’kf"+ B_ekfx)

= (A + B) (A1)

By differentiating eq (Al) twice with respect to x, pro-
pagating terms change sign in relation to decaying ones.
This enables cancellation of the decaying terms by an
appropriate arithmetic manipulation:

- F g

2k} (42)

The expression, corresponding to eq (10) but applicable
when o, stresses are present, reads

= +
& 4 4 ax“
If a finite-difference technique similar to the one used in
eq (12) is to be employed to convert eq (A3) into a usable
form, seven instead of three measurement locations would
be needed as the highest spatial derivative in eq (A3) is for



two orders higher. Practical realization of measurements
would become difficult with such a technique. Here is a
simpler technique which does not necessitate any measure-
ments of higher order derivatives.

The equilibrium equation for low-frequency flexural
motion of a pipe (Ref. 2, section 3.1),
9% _ e 97n
ax* at?

transformed with the aid of the stress-curvature relationship
da%n

f e _SE
0 o FE

leads to a simple expression:

d%a’ L 0%
x> Eba at?

(A4)

This expression relates the second spatial derivative of the
total stress in the pipe to the lateral acceleration. As a
consequence, eq (A2) with the aid of eq (A4) transforms
into a linear stress-velocity combination:

o’ 2 .
of =3 —DT"F*'{:F(S—’])} (AS)
Thus the measurement of the propagating portion of the
flexure-induced stresses can be achieved by measurement
of the stress and the lateral velocity at one location only.
Finally, to separate out one of the propagating com-
ponents, the finite-difference procedure of the type of
eq (11) should be applied after substituting o/ instead of
oineq (12).

- ad 1 . I
Op::%iml: {\/T[‘(sz—o'{)}—
+ EB(I F_l{_iF(aT]o) 4 1 F(a'f]z _ 61;.)}

4 at Aaw at at

(A6)
The use of the stress-component representation, eq (Al),

can be further extended by evaluating expressions for the
total stress component in one direction, e.g., + direction.

- - ad 1 Lgl=i
ofz op’:+a(f1‘ :20 :FmF {TF(O{—O()}
Eéa . ¢l +1i an, an,
F—_—_ F'{—F - = A7
‘el -l ek )} @

Note that both eqs (A6) and (A7) require double trans-
forms. Simplifications can again be achieved if narrow-
band measurements are taken. In this case the frequency
w is replaced by a constant, the band center frequency,
w.. The imaginary unit, which also appears in eqs (A6)
and (A7) is conveniently dealt with in one of the following
ways.

foie_ 1 d
W, w, dt
lw

These expressions convert its operation in frequency
domain into either differentiation or integration in the
time domain, as was done to obtain eq (16).

APPENDIX B: Measurement Bias

The relationship between the amplitude spectral
densities of the propagating stress components, o.(¢) and
o_(t), and the Fourier transform of the total stress,
o(1) = a.(1) + o-(t), follows from eq (Al) after replacing
o’ by o and equating B, and B_ to zero.

The output signal from a strain gage is proportional to
the mean value of the stress along the gage length.
x+1/2

S o(t,x)dx

<oa(t,x)> = L
U xZin

By putting x = 0 for the location 0, the Fourier trans-
forms of the stress difference at 2 and 1, and of the stress
at 0—as detected by the gages—read:

A/24172

Flo—a} = 7rT[A/z—//z

—-A/2+ 172

(d¢e~ikx+d_eikx) dx _

s (A‘e.(kr+/_47e‘kl)dx]:
-A/2 =172

— 2i Sir;dg/z)sin(kA/Z)(A LA

12

Floo} = T (A.e™™ + Ae™yax =

'

n 0D (4.4 4

Since F~'{F(0,)} = 04, substitution of the last two ex-
pressions into eq (12) gives an equation for the com-
ponents ¢, and o¢- in terms of their inverse FT’s.

5. = Fo {n UKL (), sinlkary))

kl/2 kA/2
1 sin(kA/2)
+o (x2S 4]} (A8)

Equation (A8) gives an indication of the effect of the
wave number, &, the gage spacing, A, and the gage length,
/, on the accuracy. As kA and k/ become smaller, the
approximations ¢. and . become closer to the true
values o. and o.. By assuming that kA and &/ are small,
which is a necessary condition for acceptable measure-
ments, further simplifications of eq (A8) are obtained by
replacing sin functions by low-order series development
terms.

sin(kAa/2) 1 — k2A?
kA/2 24
This gives
— _ i _ klll _ kZAl klAZ
Gy = F {Tr(l 24 [(1 48 )‘—4+ + 48 Ax]}

=0, + F" {n% [—(A2+2[)A , +A'4 ] }(A9)

Since F-'{7A.} = o.and F'{wA.} = o., the quantities

_k(ar+20Y)

€~ 48

2 2
e = k4‘$ (A10)

have the meaning of relative errors. These errors represent
the bias of measurement and are frequency dependent as
the wave numbers are frequency dependent.
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An Experimental Method for Determining

the Dynamic Contact Law

by James F. Doyle

ABSTRACT—An experimental method is investigated whereby
the strain response from an impacted beam is sufficient to
determine the contacting force. Once the force is known, it is
shown how the contact law can be determined. Experimental
results for an impacted aluminum beam are demonstrated.

Introduction

The impact resistance of structural materials is very
important, especially in such design applications as
helicopter rotors or turbine blades. Its need for study is
especially acute when using new materials such as fiber-
reinforced composites because of their marked susceptibility
to hard-object impact damage.

Numerical methods of structural analysis (such as
the finite-element method) require that either the forcing
history be known or that the dynamic response of both
the structure and the impactor be studied simultaneously.
In the latter case, it is necessary to have prior experi-
mental knowledge of the contact behavior (or the contact
law) between the two bodies. Indeed, an accurate account
of this contact behavior becomes the most important
step in analyzing the impact response.

The contact law is a relationship between the force and
the relative indentation of the impactor and structure,’ i.e.,

F=F(v,—v) 1)

where v, is the displacement of the impactor and v is the
displacement of the structure. In this form of the law rate
effects are incorporated only insofar as they affect F.
Thus to obtain the contact law it is necessary to measure
the force, the impactor displacement and the structure
displacement. This is very difficult to do in dynamic
situations, which is why in practice static indentation tests
are usually performed.?

To develop a fully dynamic test it is necessary to reduce
the number of measurements. This can be achieved by
invoking particular structural models for the impactor
and structure. In the present research:
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—the impactor is assumed small so that wave-propaga-
tion effects are negligible; then the force and displace-
ment of the impactor are related by

0%vs

my, a3 < - F(1) (2)

where m is the mass of the impactor; and

—the structure is assumed to be a narrow beam of the
Bernouilli-Euler type; then the force and beam displace-
ment are related by

o T R
dz+A6_L

EI —
dx* € ar?

=P 3

where E/ and oA are the stiffness and mass per unit

length respectively. P is the applied force per unit length.
Obviously other structural models could be used depending
on the circumstance. The present modeling is motivated
by research on hard-object damage and the fact that the
static indentation tests are usually performed on slender
strips of the material.

In this manner the force (or any response associated
with the beam or impactor) can be considered as the basic
unknown. Consequently, during a test only one history
need be measured. Possibilities for tests are:

—obtaining the force history by making a force-trans-
ducer part of the impactor,®

—recording the motion of the impactor by mounting an
accelerometer onto it,* and

—obtaining the response of the beam by either strain
gages or position transducers.

Each of these has its advantages and disadvantages, but

in the present research strain gages attached to the beam

are chosen primarily because of their insignificant inertia

effects and because measurements can be made away

from the impact site.

In summary, this paper will report on efforts to deter-
mine the force history and contact law from recorded
histories of strain.

Basic Scheme

Equation (3) is a complicated differential relation
between beam displacement and force. To be able to
obtain the force from the strain it is first necessary to
solve this equation in an explicit form. This is the single
great difficulty of this approach because there are not
many known solutions to eq (3).



