Michael Kohlhase (Ed.)

Mathematical
Knowledge Management

4th International Conference, MKM 2005
Bremen, Germany, July 2005
Revised Selected Papers

LNAI 3863

@ Springer




01-63
M426 Michael Kohlhase (Ed.)

Mathematical
Knowledge Management

4th International Conference, MKM 2005
Bremen, Germany, July 15-17, 2005
Revised Selected Papers

t"‘;'w
— +
ﬁ
L&
\‘_

"»

@ Springer E200603476



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editor

Michael Kohlhase

International University Bremen

School of Engineering and Science
Campus Ring 1, 28758 Bremen, Germany
E-mail: m.kohlhase @iu-bremen.de

Library of Congress Control Number: 2006920149

CR Subject Classification (1998): 1.2, H.3, H.2.8,1.7.2, F4.1, H.4, C24,G4,1.1
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-31430-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31430-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11618027 06/3142 543210



Lecture Notes in Artificial Intelligence 3863
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science



Preface

This volume contains the proceedings of the Fourth International Conference on
Mathematical Knowledge Management MKM 2005 held July 15-17, 2005 at In-
ternational University Bremen, Germany. Previous conferences have been at the
Research Institute for Symbolic Computation (RISC) Linz, Austria (September
2001), at Bertinoro, Italy (March 2003), and Bialowiecze, Poland (September
2004).

Mathematical knowledge management (MKM) is a field in the intersection of
mathematics and computer science, providing new techniques for managing the
enormous volume of mathematical knowledge available in current mathematical
sources and making it available through the new developments in information
technology.

The annual MKM Conference brings together mathematicians, software de-
velopers, publishing companies, math organizations, math users, and educators
to exchange their views and approaches, current activities and new initiatives.

For the first time, MKM 2005 chose to have post-conference proceedings, as
otherwise the submission deadline would have collided with other conferences
and crimped time since MKM 2004 in September 2004. The decision also facili-
tated keeping the conference open to new ideas as well as keeping up the maturity
of the papers necessary for inclusion into archival proceedings. With a May 15
deadline, MKM 2005 received 38 submissions. Each submission was reviewed by
at least three programme committee members. The committee decided to ac-
cept 27 papers for presentation at the conference. Out of these, 26 papers were
accepted for publication in the conference proceedings after re-evaluation by the
Programme Committee since they included significant improvements triggered
by the referee reports and the discussions at the conference.

As MKM is a small conference with a tightly knit community of authors,
submissions by Programme Committee members were allowed: six submissions
included committee members, but the review process was kept inaccessible to
them. One submission was co-authored by the Program Chair; its review process
was organized independently by Bill Farmer.

The papers in this volume cover the whole area of mathematical knowl-
edge management. Topics range from foundations and the representational and
document-structure aspects of mathematical knowledge, over process questions
like authoring, migration, and consistency management by automated theorem
proving to applications in eLearning and case studies.

I am grateful to Tom Hales for agreeing to give an invited talk at MKM 2005,
to the Programme Committee, and the external reviewers for their excellent
work and dedication to the MKM 2005 program. The work of the Programme
Committee and the preparation of the proceedings were greatly simplified by
Andrei Voronkov’s excellent EasyChair system.

October 2005 Michael Kohlhase
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A Proof-Theoretic Approach to Hierarchical
Math Library Organization

Kamal Aboul-Hosn and Terese Damhgj Andersen

Department of Computer Science, Cornell University, Ithaca, New York, USA
kamal@cs.cornell.edu, katten@kattens.dk

Abstract. The relationship between theorems and lemmas in mathe-
matical reasoning is often vague. No system exists that formalizes the
structure of theorems in a mathematical library. Nevertheless, the deci-
sions we make in creating lemmas provide an inherent hierarchical struc-
ture to the statements we prove. In this paper, we develop a formal
system that organizes theorems based on scope. Lemmas are simply the-
orems with a local scope. We develop a representation of proofs that
captures scope and present a set of proof rules to create and reorganize
the scopes of theorems and lemmas. The representation and rules al-
low systems for formalized mathematics to more accurately reflect the
natural structure of mathematical knowledge.

1 Introduction

The relationship between theorems and lemmas in mathematical reasoning is
often vague. What makes a statement a lemma, but not a theorem? One might
say that a theorem is “more important,” but what does it mean for one statement
to be “more important” than another? When writing a proof for a theorem, we
often create lemmas as a way to break down the complex proof, so perhaps
we expect the proofs of lemmas to be shorter than the proofs of theorems. We
also create lemmas when we have a statement that we do not expect to last in
readers’ minds, i.e., it is not the primary result of our work. The way we make
these decisions while reasoning provides an inherent hierarchical structure to
the set of statements we prove. However, no formal system exists that explicitly
organizes proofs into this hierarchy.

Theorem provers such as NuPRL, Coq, and Isabelle provide the ability to cre-
ate lemmas. But their library structures are flat, and no formal distinction exists
between lemmas and theorems [1, 2, 3]. The reasons to distinguish lemmas from
theorems in these systems is the same as the reasons in papers: to ascribe various
levels of importance and to introduce dependency or scoping relationships.

We seek to formalize these notions and provide a proof-theoretic means by
which to organize a set of proofs in a hierarchical fashion that reflects this natural
structure. Our thesis is that the qualitative difference between theorems and
lemmas is in their scope. Scope already applies to mathematical notation. Never
in a paper would one need to define the representation of a set ({...}) nor
operators such as union and intersection. Set notation is standard, thus has a

M. Kohlhase (Ed.): MKM 2005, LNAI 3863, pp. 1-16, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 K. Aboul-Hosn and T. Damhgj Andersen

global scope that applies to any proof. However, one often defines operators that
are only used for a single paper; the author does not intend for the notation
to exist in other papers with the same meaning without being defined again.
Similarly, a theorem is a statement that can be used in any other proof. Its
scope is global, just as set notation. A lemma is a statement with a local scope
limited to a particular set of proofs. We want a system that represents and
manipulates scope formally through the structure of the library of proofs.

In this paper, we propose such a system. First, we propose a formal definition
of scoping for proof libraries. Next, we describe a representation of proofs that
is able to capture this definition of scope based on work by Kozen and Rama-
narayanan [4]. We provide a set of formal rules to create and reorganize the
scopes of theorems and lemmas.

We believe that the ability to create and manage complex scoping and depen-
dency relationships among proofs will allow systems for formalized mathematics
to more accurately reflect the natural structure of mathematical knowledge.

2 A Motivating Example

Cousider reasoning about a Boolean algebra (B, V, A, =, 0, 1). Boolean algebra
is an equational theory, thus contains the axioms of equality:

ref:x =z (1)
sym:r=y - y==z (2)
trans:z=y—oy=z—or=2 3)

cong, :x =y — (zAz) = (2Avy) (4)
congy :x =y — (zVz)=(2Vy) (5)
cong_:r=y— x ="y (6)

All variables are implicitly universally quantified in these axioms. Suppose we
wanted to prove the following elementary fact:

Theorem 1.
Va,b,c,za=b—a=c—zV(aAb)=2V(aAc) (7)
Here is how a proof might go. First, we could prove a lemma.

Lemma 1.
Vez,y,zc =y > zV(xAz)=2zV(zAy) (8)

Using a = b and a = ¢ from the statement of our theorem, we could apply the
lemma under the substitutions [z/a,y/b, z/z] and [z/a,y/c, z/z] to deduce

zV(aAna)=2zV(aAb) 9)
zV(ana)=2zV(aAc) (10)
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Next, we know from applying symmetry to (9) that
zV(aAb)=2zV(aAa) (11)
Finally we conclude from transitivity, (9), and (11) that
zV(aAb)=zV(aNAc)

which is what our theorem states.

We may decide that (8) does not apply to theorems other than (7), and conse-
quently, should only have a scope limited to the proof of (7). Our representation
of proofs makes explicit the limited scope of (8).

Another important observation is that in all places we use (8), the variable
z from (7) is always used for the variable z in the lemma. We may wish not to
universally quantify z for both (7) and (8) individually, but instead universally
quantify z once and for all so that it can be used by both proofs:

Vz, Va,b,c,a=b—a=c— zV(aAb)=zV(aAc)
and Vz,y,z =y - 2V (zAz) =2V (zAYy) (12)

Moving the quantifier for z looks like a simple task, applying the first order
logic rule
(Vz.p) A (V2.90) = Vz.( A Y)

However, the proof of the lemma itself must also change, as must any proof that
is dependent on this lemma.

Although either version of the lemma can be used to prove the theorem,
note that their meanings are subtly different because of the placement of the
quantification. Placing a separate quantification of z as in (8) makes the lemma
read: “Lemma 1: For all z, y, and z,...” In this case, z is a variable in the lemma
for which we expect there to be a substitution whenever the lemma is used in
a proof. Using one quantification for both the theorem and the lemma as in
(12) makes the lemma read: “Let z be an arbitrary, but fixed boolean value.
Lemma 1: For all  and y...” In this case, z is a fixed constant for the lemma.

In this simple example, using (8) or (12) does not matter. However, in other
cases, the choices made for quantification may reflect a general style in one’s
proofs. One may like lemmas to be as general as possible, universally quantifying
any variables that appear in the lemma and relying on no constants. On the other
hand, one may want to make lemmas as specific as possible, applying only in a
select few proofs in order to minimize the number of quantifications. We want to
capture this subtle difference formally in our representation of proofs in order to
allow the user to choose the representation that best fits the intended meaning.

3 Proof Representation

For representing theorems and lemmas like those in Section 2, we use proof terms
similar to those defined in a paper by Kozen and Ramanarayanan [4]. Their
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paper presents a publish-cite system, which uses proof rules with an explicit
library to formalize the representation and reuse of theorems. The system of [4]
uses universal Horn equational logic, and we do as well, since it is a good vehicle
for illustrating the organization and reuse of theorems. There is no inherent
limitation in the system that requires the use of this logic; it could be extended
to work with more complex deductive systems.

We use the word “theorem” to mean a theorem, lemma, or axiom. We build
theorems from terms and equations. Consider a set of individual variables X =
{z,y,...} and a first-order signature X = {f, g,...}. An individual term s,t, ...
is either a variable z € X or an expression ft; . ..t,, where f is an n-ary function
symbol in X' and ¢; ...¢, are individual terms. An equation d, e, ... is between
two individual terms, such as s = t.

A theorem is a universally quantified Horn formula of the form

Vl‘l,....’Em.tpl‘*sOQ-‘*"'_’SDn_’w (13)

where the ;s are equations representing premises, v is an equation represent-
ing the conclusion, and x; ...z, are the variables that occur in the equations
®1,.-,¢n,¥. A formula may have zero or more premises. These universally
quantified formulas allow arbitrary specialization through term substitution. An
example of this is the use of (8) with substitutions to get (9) and (10).

Let P be a set of proof variables p,q,.... A proof of a theorem is a A-term
abstracted over both the proof variables for each premise of a theorem proven
by the proof and the individual terms that appear in the proof. A proof term is:

— a variable p € P

— a constant, referring to the name of a theorem

— an application 77, where 7 and 7 are proof terms

— an application 7t, where 7 is a proof term and t is an individual term

— an abstraction Ap.7, where p is proof variable and 7 is a proof term

— an abstraction Az.7, where z is an individual variable and 7 is a proof term

When creating proof terms, we have the typing rules seen in Table 1. These
typing rules are what one would expect for a simply-typed A-calculus. The typing
environment I" maps variables and constants to types. According to the Curry-
Howard Isomorphism, the type of a well-typed A-term corresponds to a theorem
in constructive logic and the A-term itself is the proof of that theorem [5]. For
example, a theorem such as (13) viewed as a type would be realized by a proof
term representing a function that takes an arbitrary substitution for the variables
z; and proofs of the premises ¢; and returns a proof of the conclusion .

In [4], a library of theorems is represented as a flat list of proof terms. All of
the theorems have global scope, i.e., they are able to be cited in any other proof
in the library.

The goal of this paper is to provide a scoping discipline so that naming and
use of variables can be localized. The proof term itself should tell us in which
proofs we can use a lemma. We use a construct similar to the SML let expression,
which limits the scope of variables in the same way we wish to limit the scope
of lemmas.
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Table 1. Typing rules for proof terms

I'p:ebFp:e I'c:pkc:p
I'Fm:e—¢ I'kr1:e I'tnm:Vz.p
'knr:p ' 7t plz/t]
Ip:ekF7:¢ I'kT:¢
I'XdpT:ie—o I'-Xxr: V.o

In order to represent theorems in a hierarchical fashion, we add two kinds of
proof terms:

— a sequence Ti;...;Tp, Where 7y,...,7, are proof terms. This allows several
proofs to use the same lemmas. Sequences cannot occur inside applications.

— an expression let L; = 77... L, = 7,, in 7 end. This term is meant to express
the definition of a set of lemmas for use in a proof term 7. The 7;s are proof
terms, each bound to an identifier L;. With the existence of the sequences,
each 7; may define the proof for more than one lemma. The identifiers L;
are arrays, where the j** element, denoted L;[j], is the name of the lemma
corresponding to the j** proof in 7; not bound to a name in 7i, denoted 7;[7].
The let expression binds names to the proofs and limits their scope to proof
terms that appear later in the let expression. In other words, a lemma L;[j)
can appear in any proof 7, k > ¢, or in 7. The name of a lemma has the same
type as the proof to which it corresponds. This scoping discipline for lemmas
corresponds exactly to the variable scoping used in SML let expressions.

These new rules have corresponding typing rules, in Table 2.

Table 2. Typing rules for proof terms

I'bmiipr ... T'kryigp
FEmso mioi A Apn

I'kF71:p
F,L1Z(p1f'7'2:502

ILy:p1,..., Loy i ona1 - Tn t on
IyLy:pr, ..., Lp:on T

I'Hlet Li=7...L, =71, inTend:t,al—v...—wpn-%Lp

The rule for a sequence of proof terms is relatively straightforward; the type
of a sequence is the conjunction of the types of the proof terms in the sequence.
The typing rule for the let expression is based on the scoping of the proofs. We
must be able to prove that each proof 74 has type ¢ under the assumption that
all variables L;,7 < k have the type s, Where 7; is assigned to L;. F inally, we
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must be able to prove that 7 has the type ¢ under the assumption that every
L; has type ;.
As an example, we represent the proofs of (7) and (8) as

thm =
let lem= AzAyAzAP.(Proof of lemma)
in
AaABACA2ZAQAR trans (sym (lem Q)) (lem R)
end

where thm is the name assigned to (7) and lem is the name assigned to (8). For
ease of reading, we have omitted the applications of proof terms to individual
terms, which represent the substitution for individual variables. P, Q, and R are
proofs of type = = y, a = b, and a = c, respectively.

If we choose to universally quantify z only once as in (12), we represent the
proof as

thm =
Az let lem= AzAyAP.(Proof of lemma)
in
AGADACAQAR. trans (sym (lem Q)) (lem R)
end

As we can see, there is a one-to-one correspondence between the positions of
A-abstractions and where individual variables are universally quantified. We for-
mally develop the proof terms for thm and lem in Section 5.

4 Proof Rules

We provide several rules for creating and manipulating proofs. The rules allow
one to build proofs constructively. They manipulate a structure of the form
L;C; T, where

— L is the library of theorems, T} = m,...,T,, = m,, where T; is an array of
identifiers with the j** element denoted T;[j], naming the j** proof in m;,
denoted m;[j],

— C is the list of lemmas currently in scope, L1 = 71,..., Ly = Tm, with
components defined as they are for £, and

— T is a list of annotated proof tasks of the form A F 7 : ¢, where A is a list
of assumptions, 7 is a proof term, and ¢ is an unquantified Horn formula.

In these rules, we use the following notational conventions:

— «a and ( are proof variables or individual variables.

— X is a set of elements {X1,..., X,,}, where X; can be an individual variable
or a proof variable.

— T = m binds a proof term 7 to an identifier 7. The term 7 may define the
proof for more than one theorem. Therefore, the identifier T is an array,



