Selected Chapters from

INTRODUCTION TO
COMPUTING SYSTEMS

From Bits and Gates to C and Beyond

Yale N. Patt
Sanjay J. Patel

Selected Chapters from

INTRODUCTION TO
COMPUTING SYSTEMS

From Bits and Gates to C and Beyond

First Edition

Yale N. Patt
The University of Texas at Austin

Sanjay J. Patel
University of lllinois at Urbana-Champaign

For

University of Cincinnati

The McGraw-Hill Companies, Inc.
Primis Custom Publishing

New York St. Louis San Francisco Auckland Bogotd
Caracas Lisbon London Madrid Mexico Milan Montreal
New Delhi Paris San Juan Singapore Sydney Tokyo Toronto

McGraw-Hill Higher Education 2

A Division of The McGraw-Hill Companies

Selected Chapters from INTRODUCTION TO COMPUTING SYSTEMS
From Bits and Gates to C and Beyond

Copyright ©2000 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a data base retrieval system, without prior
written permission of the publisher.

This book contains selected material from Introduction to Computing Systesm: From Bits and
Gates to C and Beyond, First edition by Yale N. Patt and Sanjay J. Patel. Copyright © 2001,
by the McGraw-Hill Companies, Inc. Reprinted with permission of the publisher.
1234567890 QSR QSR 00

ISBN 0-07-244100-3

Custom Editor: Judith Wetherington
Printer/Binder: Quebecor World, Dubuque, Iowa

To the memory of my parents,
Abraham Walter Patt A"'H and Sarah Clara Patt A""H,
who taught me to value “learning”
even before they taught me to ride a bicycle.

To Mira and her grandparents,
Sharda Patel and Jeram Patel.

PREFACE

This textbook has evolved from EECS 100, the first computing course for computer science,
computer engineering, and electrical engineering majors at the University of Michigan, that
Kevin Compton and the first author introduced for the first time in the fall term, 1995.

EECS 100 happened because Computer Science and Engineering faculty had been dissat-
isfied for many years with the lack of student comprehension of some very basic concepts. For
example, students had a lot of trouble with pointer variables. Recursion seemed to be “magic,”
beyond understanding.

We decided in 1993 that the conventional wisdom of starting with a high-level program-
ming language, which was the way we (and most universities) were doing it, had its short-
comings. We decided that the reason students were not getting it was that they were forced to
memorize technical details when they did not understand the basic underpinnings.

The resultis the bottom-up approach taken in this book. We treat (in order) MOS transistors
(very briefly, long enough for students to grasp their global switch-level behavior), logic gates,
latches, logic structures (MUX, Decoder, Adder, gated latches), finally culminating in an
implementation of memory. From there, we move on to the Von Neumann model of execution,
then a simple computer (the LC-2), machine language programming of the LC-2, assembly
language programming of the LC-2, the high level language C, recursion, pointers, arrays, and
finally some elementary data structures.

‘We do not endorse today’s popular information hiding approach when it comes to learning.
Information hiding is a useful productivity enhancement technique after one understands what
is going on. But until one gets to that point, we insist that information hiding gets in the way of
understanding. Thus, we continually build on what has gone before, so that nothing is magic,
and everything can be tied to the foundation that has already been laid.

We should point out that we do not disagree with the notion of top-down design. On
the contrary, we believe strongly that top-down design is correct design. But there is a clear
difference between how one approaches a design problem (after one understands the underlying
building blocks), and what it takes to get to the point where one does understand the building
blocks. In short, we believe in top-down design, but bottom-up learning for understanding.

WHAT IS IN THE BOOK

The book breaks down into two major segments, a) the underlying structure of a computer, as
manifested in the LC-2; and b) programming in a high level language, in our case C.

The LC-2

We start with the underpinnings that are needed to understand the workings of a real computer.
Chapter 2 introduces the bit and arithmetic and logical operations on bits. Then we begin to
build the structure needed to understand the LC-2. Chapter 3 takes the student from MOS
transistor, step by step, to a real memory. Our real memory consists of 4 words of 3 bits each,
rather than 64 megabytes. The picture fits on a single page (Figure 3.20), making it easy for a
student to grasp. By the time the students get there, they have been exposed to all the elements

Preface

that make memory work. Chapter 4 introduces the Von Neumann execution model, as a lead-in
to Chapter 5, the LC-2.

The LC-2 is a 16-bit architecture that includes physical I/O via keyboard and monitor;
TRAPs to the operating system for handling service calls; conditional branches on N, Z, and
P condition codes; a subroutine call/return mechanism; a minimal set of operate instructions
(ADD, AND, and NOT); and various addressing modes for loads and stores (direct, indirect,
base+offset, and an immediate mode for loading effective addresses).

Chapter 6 is devoted to programming methodology (stepwise refinement) and debugging,
and Chapter 7 is an introduction to assembly language programming. We have developed a
simulator and an assembler for the LC-2. Actually, we have developed two simulators, one that
runs on Windows platforms and one that runs on UNIX. The Windows simulator is available
on the website and on the CD-ROM. Students who would rather use the UNIX version can
download and install the software from the web at no charge.

Students use the simulator to test and debug programs written in LC-2 machine language
and in LC-2 assembly language. The simulator allows on-line debugging (deposit, examine,
single-step, set breakpoint, and so on). The simulator can be used for simple LC-2 machine
language and assembly language programming assignments, which are essential for students
to master the concepts presented throughout the first 10 chapters.

Assembly language is taught, but not to train expert assembly language programmers.
Indeed, if the purpose was to train assembly language programmers, the material would be
presented in an upper-level course, not in an introductory course for freshmen. Rather, the
material is presented in Chapter 7 because it is consistent with the paradigm of the book. In our
bottom-up approach, by the time the student reaches Chapter 7, he/she can handle the process
of transforming assembly language programs to sequences of Os and 1s. We go through the
process of assembly step-by-step for a very simple LC-2 Assembler. By hand assembling, the
student (at a very small additional cost in time) reinforces the important fundamental concept
of translation.

It is also the case that assembly language provides a user-friendly notation to describe
machine instructions, something that is particularly useful for the second half of the book.
Starting in Chapter 11, when we teach the semantics of C statements, it is far easier for the
reader to deal with ADD R1, R2, R3 than with 0001001010000011.

Chapter 8 deals with physical input (from a keyboard) and output (to a monitor). Chapter
9 deals with TRAPs to the operating system, and subroutine calls and returns. Students study
the operating system routines (written in LC-2 code) for carrying out physical I/O invoked by
the TRAP instruction.

The first half of the book concludes with Chapter 10, a treatment of stacks and data
conversion at the LC-2 level, and a comprehensive example that makes use of both. The
example is the simulation of a calculator, which is implemented by a main program and 11
subroutines.

The Language C

From there, we move on to C. The C programming language occupies the second half of the
book. By the time the student gets to C, he/she has an understanding of the layers below.

The C programming language fits very nicely with our bottom-up approach. Its low-
level nature allows students to see clearly the connection between software and the underlying
hardware. In this book we focus on basic concepts such as control structures, functions, and
arrays. Once basic programming concepts are mastered, it is a short step for students to learn
more advanced concepts such as objects and abstraction.

Preface

Each time a new construct in C is introduced, the student is shown the LC-2 code that
a compiler would produce. We cover the basic constructs of C (variables, operators, control,
functions), pointers, recursion, arrays, structures, I/O, complex data structures, and dynamic
allocation.

Chapter 11 is a gentle introduction to high-level programming languages. At this point,
students have dealt heavily with assembly language and can understand the motivation behind
what high-level programming languages provide. Chapter 11 also contains a simple C program,
which we use to kick-start the process of learning C.

Chapter 12 deals with values, variables, constants, and operators. Chapter 13 introduces
C control structures. We provide many complete program examples to give students a sample
of how each of these concepts are used in practice. LC-2 code is used to demonstrate how each
C construct affects the machine at the lower levels.

In Chapter 14, students are exposed to techniques for debugging high-level source code.
Chapter 15 introduces functions in C. Students are not merely exposed to the syntax of functions.
Rather they learn how functions are actually executed using a run-time stack. A number of
examples are provided.

Chapter 16 teaches recursion, using the student’s newly gained knowledge of functions,
activation records, and the run-time stack. Chapter 17 teaches pointers and arrays, relying
heavily on the students’ understanding of how memory is organized. Chapter 18 introduces
the details of I/O functions in C, in particular, streams, variable length argument lists, and
how C I/O is affected by the various format specifications. This chapter relies on the student’s
earlier exposure to physical I/O in Chapter 8. Chapter 19 concludes the coverage of C with
structures, dynamic memory allocation, and linked lists.

Along the way, we have tried to emphasize good programming style and coding method-
ology by means of examples. Novice programmers probably learn at least as much from the
programming examples they read as from the rules they are forced to study. Insights that
accompany these examples are highlighted by means of lightbulb icons that are included in the
margins.

We have found that the concept of pointer variables (Chapter 17) is not at all a problem.
By the time students encounter it, they have a good understanding of what memory is all about,
since they have analyzed the logic design of a small memory (Chapter 3). They know the
difference, for example, between a memory location’s address and the data stored there.

Recursion ceases to be magic since, by the time a student gets to that point (Chapter
16), he/she has already encountered all the underpinnings. Students understand how stacks
work at the machine level (Chapter 10), and they understand the call/return mechanism from
their LC-2 machine language programming experience, and the need for linkages between a
called program and the return to the caller (Chapter 9). From this foundation, it is not a large
step to explain functions by introducing run-time activation records (Chapter 15), with a lot
of the mystery about argument passing, dynamic declarations, and so on, going away. Since a
function can call a function, it is one additional small step (certainly no magic involved) for a
function to call itself.

How to Use this Book

We have discovered over the past two years that there are many ways the material in this book
can be presented in class effectively. We suggest six presentations below.

1. The Michigan model. First course, no formal prerequisites. Very intensive, this course
covers the entire book. We have found that with talented, very highly motivated students,
this works best.

Preface

2. Normal usage. First course, no prerequisites. This course is also intensive, although less
so. It covers most of the book, leaving out Sections 10.3 and 10.4 of Chapter 10, Chapters
16 (recursion), 18 (the details of C I/O), and 19 (data structures).

3. Second course. Several schools have successfully used the book in their second course,
after the students have been exposed to programming with an object-oriented programming
language in amilder first course. In this second course, the entire book is covered, spending
the first two-thirds of the semester on the first 10 chapters, and the last one-third of the
semester on the second half of the book. The second half of the book can move more
quickly, given that it follows both Chapter 1-10 and the introductory programming course,
which the student has already taken. Since students have experience with programming,
lengthier programming projects can be assigned. This model allows students who were
introduced to programming via an object-oriented language to pick up C, which they
will certainly need if they plan to go on to advanced software courses such as operating
systems.

4. Two quarters. An excellent use of the book. No prerequisites, the entire book can be
covered easily in two quarters, the first quarter for Chapters 1-10, the second quarter for
Chapters 11-19.

5.. Two semesters. Perhaps the optimal use of the book. A two-semester sequence for
freshmen. No formal prerequisites. First semester, Chapters 1-10, with supplemental
material from Appendix C, the Microarchitecture of the LC-2. Second semester, Chapters
11-19 with additional substantial programming projects so that the students can solidify
the concepts they learn in lectures.

6. A sophomore course in computer hardware. Some universities have found the book useful
for a sophomore level breadth-first survey of computer hardware. They wish to introduce
students in one semester to number systems, digital logic, computer organization, machine
language and assembly language programming, finishing up with the material on stacks,
activation records, recursion, and linked lists. The ideais to tie the hardware knowledge the
students have acquired in the first part of the course to some of the harder to understand
concepts that they struggled with in their freshman programming course. We strongly
believe the better paradigm is to study the material in this book before tackling an object-
oriented language. Nonetheless, we have seen this approach used successfully, where the
sophomore student gets to understand the concepts in this course, after struggling with
them during the freshman year.

Some Observations

Understanding, not Memorizing Since the course builds from the bottom up, we have found
that less memorization of seemingly arbitrary rules is required than in traditional programming
courses. Students understand that the rules make sense since by the time a topic is taught, they
have an awareness of how that topic is implemented at the levels below it. This approach is
good preparation for later courses in design, where understanding of and insights gained from
fundamental underpinnings is essential to making the required design tradeoffs.

The Student Debugs the Student’s Program We hear complaints from industry all the time
about CS graduates not being able to program. Part of the problem is the helpful teaching
assistant, who contributes far too much of the intellectual component of the student’s program,
so the student never has to really master the art. Our approach is to push the student to do the
job without the teaching assistant (TA). Part of this comes from the bottom-up approach where
memorizing is minimized and the student builds on what he/she already knows. Part of this is

Preface

the simulator, which the student uses from day one. The student is taught debugging from the
beginning and is required to use the debugging tools of the simulator to get his/her programs
to work from the very beginning. The combination of the simulator and the order in which the
subject material is taught results in students actually debugging their own programs instead of
taking their programs to the TA for help . .. and the common result that the TAs end up writing

the programs for the students.

Preparation for the Future: Cutting Through Protective Layers In today’s real world,
professionals who use computers in systems but remain ignorant of what is going on underneath
are likely to discover the hard way that the effectiveness of their solutions is impacted adversely
by things other than the actual programs they write. This is true for the sophisticated computer
programmer as well as the sophisticated engineer.

Serious programmers will write more efficient code if they understand what is going
on beyond the statements in their high-level language. Engineers, and not just computer
engineers, are having to interact with their computer systems today more and more at the
device or pin level. In systems where the computer is being used to sample data from some
metering device such as a weather meter or feedback control system, the engineer needs to
know more than just how to program in FORTRAN. This is true of mechanical, chemical,
and aeronautical engineers today, not just electrical engineers. Consequently, the high-level
programming language course, where the compiler protects the student from everything “ugly”
underneath, does not serve most engineering students well, and certainly does not prepare them
for the future.

Rippling Effects Through the Curriculum The material of this text clearly has a rippling
effect on what can be taught in subsequent courses. Subsequent programming courses can
not only assume the students know the syntax of C but also understand how it relates to
the underlying architecture. Consequently, the focus can be on problem solving and more
sophisticated data structures. On the hardware side, a similar effect is seen in courses in digital
logic design and in computer organization. Students start the logic design course with an
appreciation of what the logic circuits they master are good for. In the computer organization
course, the starting point is much further along than when students are seeing the term Program
Counter for the first time. Feedback from Michigan faculty members in the follow-on courses
have noticed substantial improvement in student’s comprehension, compared to what they saw
before students took EECS 100.

ACKNOWLEDGMENTS

This book has benefited greatly from important contributions of many, many people. At the
risk of leaving out some, we would at least like to acknowledge the following.

First, Professor Kevin Compton. Kevin believed in the concept of the book since it was
first introduced at a curriculum committee meeting that he chaired at Michigan in 1993. The
book grew out of a course (EECS 100) that he and the first author developed together, and
co-taught the first three semesters it was offered at Michigan in fall 1995, winter 1996, and
fall 1996. Kevin’s insights into programming methodology (independent of the syntax of the
particular language) provided a sound foundation for the beginning student. The course at
Michigan and this book would be a lot less were it not for Kevin’s influence.

Several other students and faculty at Michigan were involved in the early years of EECS
100 and the early stages of the book. We are particularly grateful for the help of Professor
David Kieras, Brian Hartman, David Armstrong, Matt Postiff, Dan Friendly, Rob Chappell,
David Cybulski, Sangwook Kim, Don Winsor, and Ann Ford.

Preface

We also benefited enormously from TAs who were committed to helping students learn.
The focus was always on how to explain the concept so the student gets it. We acknowledge,
in particular, Fadi Aloul, David Armstrong, David Baker, Rob Chappell, David Cybulski,
Amolika Gurujee, Brian Hartman, Sangwook Kim, Steve Maciejewski, Paul Racunas, David
Telehowski, Francis Tseng, Aaron Wagner, and Paul Watkins.

We were delighted with the response from the publishing world to our manuscript. We
ultimately decided on McGraw-Hill in large part because of the editor, Betsy Jones. Once she
checked us out, she became a strong believer in what we are trying to accomplish. Throughout
the process, her commitment and energy level have been greatly appreciated. We also appreciate
what Michelle Flomenhoft has brought to the project. It has been a pleasure to work with her.

Our book has benefited from extensive reviews provided by faculty members at many
universities. We gratefully acknowledge reviews provided by Carl D. Crane III, Florida, Nat
Davis, Virginia Tech, Renee Elio, University of Alberta, Kelly Flangan, BYU, George Fried-
man, UIUC, Franco Fummi, Universita di Verona, Dale Grit, Colorado State, Thor Gulsrud,
Stavanger College, Brad Hutchings, BYU, Dave Kaeli, Northeastern, Rasool Kenarangui, UT
at Arlington, Joel Kraft, Case Western Reserve, Wei-Ming Lin, UT at San Antonio, Roderick
Loss, Montgomery College, Ron Meleshko, Grant MacEwan Community College, Andreas
Moshovos, Northwestern, Tom Murphy, The Citadel, Murali Narayanan, Kansas State, Carla
Purdy, Cincinnati, T. N. Rajashekhara, Camden County College, Nello Scarabottolo, Universita
degli Studi di Milano, Robert Schaefer, Daniel Webster College, Tage Stabell-Kuloe, Univer-
sity of Tromsoe, Jean-Pierre Steger, Burgdorf School of Engineering, Bill Sverdlik, Eastern
Michigan, John Tronto, St. Michael’s College, Murali Varansi, University of South Florida,
Montanez Wade, Tennessee State, and Carl Wick, US Naval Academy.

In addition to all these people, there were others who contributed in many different and
sometimes unique ways. Space dictates that we simply list them and say thank you. Susan
Kornfield, Ed DeFranco, Evan Gsell, Rich Belgard, Tom Conte, Dave Nagle, Bruce Shriver,
Bill Sayle, Steve Lumetta, Dharma Agarwal, and David Lilia.

Finally, if you will indulge the first author a bit: This book is about developing a strong
foundation in the fundamentals with the fervent belief that once that is accomplished, students
can go as far as their talent and energy can take them. This objective was instilled in me by
the professor who taught me how to be a professor, Professor William K. Linvill. It has been
more than 35 years since I was in his classroom, but I still treasure the example he set.

A FINAL WORD

We hope you will enjoy the approach taken in this book. Nonetheless, we are mindful that the
current version will always be a work in progress, and both of us welcome your comments on
any aspect of it. You can reach us by email at patt@ece.utexas.edu and sjp@crhc.uiuc.edu.
We hope you will.

Yale N. Patt
Sanjay J. Patel

Chapter
Welcome Aboard 1

What We Will Try To Do 1

How We Will Get There 2

A Computer System 3

Two Very Important Ideas 5
Computers as Universal Computational
Devices 6

How Do We Get the Electrons to Do the
Work? 8

1.1
1.2
1.3
14
1.5

1.6

1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8

Problems

Chapter

Bits, Data Types, and Operations 17

2.1

2.2

2.3
24

2.5

CONTENTS

The Statement of the Problem 9
The Algorithm 10
The Program 10
The ISA 11
The Micoarchitecture 12
The Logic Circuit 12
The Devices 13
Putting It Together 13
13

Bits and Data Types 17

2.1.1
2.12

The Bit as the Unit of Information 17

Data Types 18

Integer Data Types 19

221
222

Unsigned Integers 19
Signed Integers 19

2’s Complement Integers 21
Binary-Decimal Conversion 23

24.1
24.2

25.1
2.5.2
253

Binary to Decimal Conversion 23

Decimal to Binary Conversion 24
Operations on Bits—Part I: Arithmetic 25
Addition and Subtraction 25

Sign-extension 26

Overflow 27

2.6 Operations on Bits—Part II: Logical
Operations 29
2.6.1 The AND Function 29
2.6.2 The OR Function 30
2.6.3 The NOT Function 30
2.6.4 The Exclusive-OR Function 31
2.6.5 Examples 31

2.7 Other Representations 32
2.7:1 Floating Point Data Type 32
272 ASCII Codes 36
273 Hexadecimal Notation 36
Problems 38

Chapter 3
Digital Logic Structures 47

3.1 The Transistor 47
3.2 Logic Gates 49
3.2.1 The NOT Gate (or, Inverter) 49
322 OR and NOR Gates 50
323 AND and NAND Gates 52
324 DeMorgan’s Law 54
3.25 Larger Gates 55
3.3 Combinational Logic Structures 55
3.3.1 Decoder 56
332 Mux 56
333 Full Adder Circuit 57
334 Logical Completeness 60
3.4 Basic Storage Elements 60
34.1 The R-S Latch 61
342 The Gated D Latch 62
343 A Register 62
3.5 The Concept of Memory 64
35.1 Address Space 64
352 Addressability 64
353 A 22-by-3-bit Memory 65
3.6 The Data Path of the LC-2 67
Problems 68

Contents

Chapter 4 5.6

The Von Neumann Model 75

4.1 Basic Components 75
4.1.1 Memory 75
4.1.2 Processing Unit 77
4.13 Input and Output 78
4.14 Control Unit 78
4.1.5 Summary: The LC-2 as an Example of
the Von Neumann Model 79
4.2 Instruction Processing 79
421 The Instruction 80
422 The Instruction Cycle 82
4.2.3 Examples 84
4.3 Changing the Sequence of Execution 84
4.4 Stopping the Computer 85
Problems 87
Chapter 5
The LC-2 91
5.1 TheISA: Overview 91
5.1.1 Memory Organization 92
5.12 Registers 92
513 The Instruction Set 93
514 Opcodes 93
5.1.5 Data Types 93
5.1.6 Addressing Modes 95
5.1.7 Condition Codes 95
5.2 Operate Instructions 95
5.3 Data Movement Instructions 97
5.3.1 Immediate Mode 98
5.3.2 Direct Mode 98
533 Indirect Mode 99
534 Base+Offset Mode 99
5.35 An Example 99
5.4 Control Instructions 101
5.4.1 Conditional Branches 101
54.2 An Example 102
543 Two Methods for Loop Control 104
544 Example: Adding a Column of
Numbers Using a Sentinel 105
54.5 The TRAP Instruction 106
5.5 Another Example: Counting Occurrences of

a Character 107

The Data Path Revisited 110

5.6.1
562
Problems

Basic Components of the Data Path 110
The Instruction Cycle 113
114

chapter

]

Welcome Aboard

1.1 WHAT WE WILL TRY TO DO

Welcome to “From Bits and Gates to C and Beyond.” Our intent is to introduce you
over the next 515 pages to the world of computing. As we do so, we have one objective
above all others: to show you very clearly that there is no magic to computing. The
computer is a deterministic system—every time we hit it over the head in the same
way and in the same place (provided, of course, it was in the same starting condition),
we get the same response. The computer is not an electronic genius; on the contrary,
if anything, it is an electronic idiot, doing exactly what we tell it to do. It has no mind
of its own.

What appears to be a very complex organism is really just a huge, systematically
interconnected collection of very simple parts. Our job throughout this book is to
introduce you to those very simple parts, and, step-by-step, build the interconnected
structure that you know by the name computer. Like a house, we will start at the
bottom, construct the foundation first, and then go on to add layers and layers, as
we get closer and closer to what most people know as a full-blown computer. Each
time we add a layer, we will explain what we are doing, tying the new ideas to the
underlying fabric. Our goal is that when we are done, you will be able to write
programs in a computer language such as C, using the sophisticated features of that
language, and understand what is going on underneath, inside the computer.

CHAPTER 1 e Welcome Aboard

1.2 HOW WE WILL GET THERE

We will start (in Chapter 2) by noting that the computer is a piece of electronic
equipment and, as such, consists of electronic parts interconnected by wires. Every
wire in the computer, at every moment in time, is either at a high voltage or a low
voltage. We do not differentiate exactly how high. For example, we do not distinguish
voltages of 115 volts from voltages of 118 volts. We only care whether there is or
whether there is not a large voltage relative to 0 volts. That absence or presence of a
large voltage relative to O volts is represented as O or 1.

We will encode all information as sequences of Os and 1s. For example, one
encoding of the letter a that is commonly used is the sequence 01100001. One
encoding of the decimal number 35 is the sequence 00100011. We will see how to
perform operations on such encoded information.

Once we are comfortable with information represented as codes made up of Os and
1s and operations (addition, for example) being performed on these representations,
we will begin the process of showing how a computer works. In Chapter 3, we will
see how the transistors that make up today’s microprocessors work. We will further
see how those transistors are combined into larger structures that perform operations,
such as addition, and into structures that allow us to save information for later use. In
Chapter 4, we will combine these larger structures into the Von Neumann machine,
a basic model that describes how a computer works. In Chapter S, we will begin to
study a simple computer, the LC-2. LC-2 stands for Little Computer 2; we started
with LC-1 but needed a second chance before we got it right! The LC-2 has all the
important characteristics of the microprocessors that you may have already heard of,
for example, the Intel 8088, which was used in the first IBM PCs back in 1981. Or the
Motorola 68000, which was used in the Macintosh, vintage 1984. Or the Pentium III,
one of the high-performance microprocessors of choice in the PC of the year 2000.
That is, the LC-2 has all the important characteristics of these “real” microprocessors,
without being so complicated that it gets in the way of your understanding.

Once we understand how the LC-2 works, the next step is to program it, first
in its own language (Chapter 6), then in a language called assembly language that
is a little bit easier for humans to work with (Chapter 7). Chapter 8 deals with the
problem of getting information into (input) and out of (output) the LC-2. Chapter 9
covers two sophisticated LC-2 mechanisms, TRAPs and subroutines.

We conclude our introduction to programming the LC-2 in Chapter 10 by first
introducing two important concepts (stacks and data conversion), and then by showing
a sophisticated example: an LC-2 program that carries out the work of a handheld
calculator.

In the second half of the book (Chapters 11-19), we turn our attention to a high-
level programming language, C. We include many aspects of C that are usually not
dealt with in an introductory textbook. In almost all cases, we try to tie high-level C
constructs to the underlying LC-2, so that you will understand what you demand of
the computer when you use a particular construct in a C program.

1.3 A Computer System

Our treatment of C starts with basic topics such as variables and operators (Chap-
ter 12), control structures (Chapter 13), and functions (Chapter 14). We then move
on to the more advanced topics of debugging C programs (Chapter 15), recursion
(Chapter 16), and pointers and arrays (Chapter 17).

We conclude our introduction to C by examining two very common high-level
constructs, input/output in C (Chapter 18) and the linked list (Chapter 19).

1.3 A COMPUTER SYSTEM

We have used the word computer many times in the preceding paragraphs, and al-
though we did not say so explicitly, we used it to mean a mechanism that does two
things: It directs the processing of information and it performs the actual processing
of information. It does both these things in response to a computer program. When
we say “directing the processing of information,” we mean figuring out which task
should get carried out next. When we say “performing the actual processing,” we
mean doing the actual additions, multiplications, and so forth that are necessary to
get the job done. A more precise term for this mechanism is a central processing unit
(cpu), or simply a processor. This textbook is primarily about the processor and the
programs that are executed by the processor.

Twenty years ago, the processor was constructed out of ten or more 18-inch
electronic boards, each containing 50 or more electronic parts known as integrated
circuit packages (see Figure 1.1). Today, a processor usually consists of a single
microprocessor chip, built on a piece of silicon material, measuring less than an inch
square, and containing many millions of transistors (see Figure 1.2).

However, when most people use the word computer, they usually mean more
than the processor. They usually mean the collection of parts that in combination
form their “computer system” (see Figure 1.3). A computer system usually includes,
in addition to the processor, a keyboard for typing commands, a mouse for clicking
on menu entries, a monitor for displaying information that the computer system
has produced, a printer for obtaining paper copies of that information, memory for
temporarily storing information, disks and CD-ROMs of one sort or another for storing
information for a very long time, even after the computer has been turned off, and the
collection of programs (the software) that the user wishes to execute.

These additional items are useful to help the computer user do his/her job. With-
out a printer, for example, the user would have to copy by hand what is displayed on
the monitor. Without a mouse, the user would have to type each command, rather
than simply click on the mouse button.

So, as we begin our journey which focuses on how we get less than 1 square inch
of silicon to do our bidding, we note that the computer systems we use contain a lot
of other components to make our life more comfortable.

e Welcome Aboard

CHAPTER 1

ilio Salgueiro, Unisys

(Courtesy of Em

tage 1980s.

in

Vi

’

A processor board

Corporation.)

1.1

igure

F

A microprocessor, vintage 1998. (Courtesy of

Intel Corporation.)

Figure 1.2

1.4 Two Very Important Ideas

Figure 1.3 A personal computer. (Courtesy of Dell Computer.)

1.4 TWO VERY IMPORTANT IDEAS

Before we leave this first chapter, there are two very important ideas that we would
like you to understand, ideas that are at the core of what computing is all about.

IDEA 1: All computers (the biggest and the smallest, the fastest and the slowest,
the most expensive and the cheapest) are capable of computing exactly the same
things if they are given enough time and enough memory. That is, anything a
fast computer can do, a slow computer can do also. The slow computer just does
it more slowly. A more expensive computer cannot figure out something that a
cheaper computer is unable fo figure out as long as the cheap computer can
access enougﬁ memory. (You may have to go to the store to buy disks whenever it
runs out of memory in order to keep increasing memory.) All computers are able
to do exactly the same things. Some computers can do things faster, but none can
do more than any other.

IDEA 2: We describe our problems in English or some other language spoken
by people. Yet the problems are solved by electrons running around inside the
computer. It is necessary to transform our problem from the language of humans
to the voltages that influence the flow of electrons. This transformation is really
a sequence of systematic transformations, developed and improved over the last
50 years, which combine to give the computer the ability to carry out what ap-
pears to be some very complicated tasks. In redlity, these tasks are simple and
straightforward.

The rest of this chapter is devoted to discussing these two ideas.

