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Preface

About geometric integration

This book is about simulating dynamical systems, especially conservative sys-
tems such as arise in celestial mechanics and molecular models. We think of the
integrator as the beating heart of any dynamical simulation, the scheme which
replaces a differential equation in continuous time by a difference equation defin-
ing approximate snapshots of the solution at discrete timesteps. As computers
grow in power, approximate solutions are computed over ever-longer time inter-
vals, and the integrator may be iterated many millions or even billions of times; in
such cases, the qualitative properties of the integrator itself can become critical to
the success of a simulation. Geometric integrators are methods that exactly (i.e.
up to rounding errors) conserve qualitative properties associated to the solutions
of the dynamical system under study.

The increase in the use of simulation in applications has mirrored rising
interest in the theory of dynamical systems. Many of the recent developments in
mathematics have followed from the appreciation of the fundamentally chaotic
nature of physical systems, a consequence of nonlinearities present in even the
simplest useful models. In a chaotic system the individual trajectories are by def-
inition inherently unpredictable in the exact sense: solutions depend sensitively
on the initial data. In some ways, this observation has limited the scope and
usefulness of results obtainable from mathematical theory. Most of the common
techniques rely on local approximation and perturbation expansions, methods best
suited for understanding problems which are “almost linear,” while the new math-
ematics that would be needed to answer even the most basic questions regarding
chaotic systems is still in its infancy. In the absence of a useful general theoreti-
cal method for analyzing complex nonlinear phenomena, simulation is increasingly
pushed to the fore. It provides one of the few broadly applicable and practical
means of shedding light on the behavior of complex nonlinear systems, and is
now a standard tool in everything from materials modeling to bioengineering,
from atomic theory to cosmology.
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As models grow in complexity and dimension, and the demands placed on
simulation have risen, the need for more sophisticated numerical methods and
analytic techniques also grows. Longer time interval simulations require more
stable methods. Larger problems call for more efficient schemes, tailored to a
particular application or family of applications. And more intricate modeling of
delicate behaviors or properties requires corresponding improvements in the res-
olution of those properties during simulation.

In writing this book for a broad audience of scientists, we have attempted
to limit the introduction of technical detail, but in some places this cannot be
avoided. The calculations are generally included for the benefit of students. We
hope that appreciation of the general principles will not be lost in following the
details of arguments. In the words of John Von Neumann, “One expects a math-
ematical theorem or a mathematical theory not only to describe and classify in a
simple and elegant way numerous and a priori disparate special cases. One also
expects elegance in its architectural, structural make-up. . .. If the deductions are
lengthy or complicated there should be some simple general principle involved,
which explains the complications and details, reduces the apparent arbitrariness
to a few simple guiding motivations.” If there is one such guiding principle un-
derlying our work it is this: classical mechanics — on which all physical models
are based — also provides the proper foundation for numerical simulation of those
systems. We will attempt to show in this book that practical, efficient methods
for simulating conservative systems can be realized by making judicious use of
the methods of classical mechanics.

An emphasis on methods

In this book we address ourselves primarily to the following pair of questions:

Which properties should be fundamental to an integration method for a (conser-
vative) model?

How can we design and implement schemes that respect physical principles
regardless of timestep or traditional accuracy considerations?

Although our interest is always ultimately in the methods themselves and in
quantifying the relative differences among them, we will find that in attempting
to answer the above questions, we are drawn far afield from the usual domain
of the numerical analyst. The first question will lead us into the field of me-
chanics so that we may appreciate something of the nature of those structures
and symmetries that underlie physical models and contribute to their long-term
evolution. The second question will take us outside even the areas that have tra-
ditionally been investigated by mathematicians, since the special forms of force
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functions, presence of constraints, relationships among the variables, or efficiency
considerations dictate to a large extent the features of appropriate (i.e. practical)
methods used in applications.

It is important to emphasize that our treatment is not comprehensive; we
have made a selection from the literature which comprises — in our view — the
most important material from the standpoint of practical application.

Beginning with the idea of splitting we will show how many simple but effective
integrators can be generated by using a few building blocks. The same techniques
can be used to derive more sophisticated schemes. For example, explicit higher-
order methods have a very natural derivation in the case of canonical mechanical
systems developed in terms of the “kinetic+potential” form of the energy.

We survey recent work on methods for constrained systems and consider var-
ious approaches to the simulation of rigid body systems, methods which offer
an efficient and — in many cases — demonstrably superior geometric alternative
to more widespread schemes. Variable stepsize geometric integrators will be in-
troduced based on a rescaling of the time variable. Methods for mixed systems
possessing both rapidly and slowly varying degrees of freedom — or weak and
strong forces — also call for the construction of specialized schemes. In all cases,
our aim will be to present the ideas in as general a form as is prudent, highlighting
instances where a given technique might be of use in other applications. Molec-
ular dynamics applications are an important source of challenging problems for
geometric integration, so we devote some time to their particular characteristics.
Conservative partial differential equations introduce many new issues for the de-
velopment of geometric integrators, a topic we touch on in the final chapter of
the book.

How to use this book

This book is intended, first, as a text for a course in computational mechanics or
as a tool for self-instruction, and, second, as a basic reference for researchers and
educators — regardless of discipline — interested in using and developing geometric
integrators. The book should serve as a bridge from traditional training in the
sciences to the recent research literature in the field of geometric integration. By
emphasizing mathematical and computational issues and illustrating the various
concepts and techniques with carefully developed model problems, it is hoped
that the book can appeal to a wide audience, including mathematicians unfamiliar
with modeling issues, and physicists, chemists, and engineers wishing to gain a
better understanding of the mathematical underpinnings of existing methods or
in developing effective methods for new applications.

The book assumes only that the reader has had undergraduate coursework in
linear algebra and differential equations. At several points we introduce, but do
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not thoroughly develop, topics from dynamical systems. A good introductory text
in dynamical systems is the book of VERHULST [197]. We develop — in Chapters
2 and 3 — most of the necessary preliminaries of numerical analysis and classical
mechanics from the ground up, however the reader should be aware that the
treatment provided here of the required background material is necessarily brief;
only those elements that are essential to our later study of geometric integrators
are given. For an introduction to numerical analysis, the reader is referred to
the classic books of ATKINSON [11], BURDEN AND FAIRES [37], and DAHLQUIST AND
BJORK [48]. The book of GEAR [70] can provide a useful introduction to the
numerical solution of differential equations. The books of HAIRER, N@RSETT AND
WANNER [82] and HAIRER AND WANNER [84] can serve as references for obtaining
a more complete picture of the mathematical issues associated with construction
of methods and error analysis for ordinary differential equations. ISERLES [91] has
written an integrated text that introduces numerical methods for both ordinary
and partial differential equations.

First published at the end of the 19th century, RouTH's Dynamics of a System
of Rigid Bodies (Elementary Part)! remains a marvelous introduction to classi-
cal mechanics and provides a wealth of examples and exercises for the student
(many of which could now be revisited with the aid of the modern computa-
tional techniques developed in this book). For a more systematic treatment to
Hamiltonian classical mechanics the reader is referred to the following texts:
LANDAU AND LIFSHITZ [105], MARION [121], GoLpsTEIN [73], and ArRNOLD [7], all
of which are well-worn occupants of our bookshelves. These books are quite var-
ied in their use of notation and even in the way in which they motivate and
explain identical material, but we have found all of them to be helpful on various
occasions. If only one book is to be consulted, the elegant book of LANCZOS [104]
is remarkable both in terms of its readability and its breadth, owing partly to the
absence of detailed proofs. A modern rigorous treatment of classical mechanics
may be found in MARSDEN AND RATIU [124], a book which also contains a number
of useful examples and notes on history and applications.

The book by SANZ-SERNA AND CALVO [172] was the first to cover symplectic
integration methods and applications to classical mechanics and is still an excel-
lent introduction to the subject. The more recent book by HAIRER, LUBICH, AND
WANNER [80] covers a wide range of topics from geometric integration and should
be very useful as an additional reference.

In a graduate course in applied mathematics or computational physics, it
is probable that much of the material of Chapters 1-3 could be skipped or
skimmed, depending on the backgrounds of the students and the interests of
the teacher. Some caution should be exercised here. In particular, it is essential

'Reprinted in 1960 as a Dover Edition.
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that the student understand the concepts of convergence and order of conver-
gence for a numerical method, the definition of the flow map, first integrals, and
at least the condition for a symplectic map in terms of the Jacobian of the flow
map.

Molecular dynamics provides a rich source of problems for geometric inte-
gration, and we often draw on examples from this field for motivation and for
evaluation of concepts and methods. Here again, it is likely that the reader may,
on occasion, wish for a more detailed description of the problems or of typical ap-
proaches used by chemists and physicists. One reference stands out in this area
for clarity of presentation and breadth: ALLEN AND TILDESLEY [4]. More recent
books of FRANKEL AND SMIT [66] and ScHLick [174] help to fill in the picture.

Exercises included at the end of each chapter are intended to be demanding
but not overwhelming; some of the multi-part problems could be assigned as
projects, especially those involving the use of computers.

Computer software

This book primarily emphasizes the mathematical properties of algorithms for
solving differential equations. In later chapters, we will often see the methods
introduced and analyzed as abstract maps of phase space. This approach, while
essential to understanding and generalizing the methods, has the tendency to
obscure both the intuitive basis for the theory and the ultimate importance of
the subject. We would like emphasize that the student must implement and test
numerical methods in order to gain a full understanding of the subject.

While any programming language and graphics package could, in principle,
be employed, the need for flexibility in the coding and testing of methods and
the need to be able to work easily with scientific functions of vectors and matri-
ces makes a specialized, interpreted language system for mathematics the best
environment for problem solving.

At the time of this writing, there are several widely distributed commercial
software packages that support the simplified design and testing of algorithms,
including the commercial packages MATLAB, MAPLE, and MATHEMATICA.
Of these, the authors prefer the user interface and programming structure of
MATLARB, but this is largely a matter of taste and any of the three mentioned
systems would be suitable. These packages are all available to students at heavily
discounted prices and run on a variety of computer platforms.

For a student on a severe budget, there are several widely available free alter-
natives to the commercial packages. These options include, notably, OCTAVE,
which is distributed under the Free Software Foundation's GNU Public License.
Our experience with this software is that it is adequate for most study purposes,
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although the commercial alternatives are generally superior with regard to ease-
of-use, documentation, and reliability.

We will occasionally describe algorithms in this text, but we will attempt
to avoid system-specific details, so the student is expected to supplement the
mathematical study with study of the the user’'s guide for the software system
they are using, in particular the appropriate sections on programming.

Notation

Let us summarize some basic notation used throughout the book. Dependent
variables, such as positions g and velocities v are elements of a Euclidean space
RY, where d > 1 is the appropriate dimension. More specifically, we will always
identify dependent variables with column vectors. When two column vectors u €
R, v € R are given we may write (u, v)T for the column vector in R“*/ obtained
by concatenating the two vectors. The transpose is there to remind us that the
result is again a column vector. We will often need to refer to a set indexed by a
parameter for which we write {a;}:cp, where P is the index set. As a short-hand,
we will write {a;} if the index set is clear from the context.

The set of k x k matrices with real coefficients is R“*¥ and capital bold-face
letter are used to denote matrices, e.g., A, B € R¥*K_ The k-dimensional identity
is I, or I as a short-hand if the dimension is clear from the context.

A vector-valued function F : R — R™ will be assumed to map column
vectors of dimension n to column vectors of dimension m. The vector of partial
derivatives of a scalar-valued function f(q) is identified with a row vector in RY
and is denoted by fq(q) or, equivalently, by 8f /0q (q). Hence the Jacobian matrix
of a vector-valued function F(q) is identified with the m x n matrix Fq4(q).

The scalar product, inner product, or dot product of two column vectors a
and b in RY is denoted by (a, b) or a-b, or, simply, a’ b, where a’ is the transpose
of a. The cross product of a and b is denoted a x b. We will frequently use

ab=axb,

where a € R3*3 is a skew-symmetric matrix related to the vector a = (a1, a»,
T
az)’ by

0 —as an
a=| a3 0 -
—a» A 0

The norm of a vector a is defined by

lall = (a, a)*/2.
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A real-valued function f defined on an interval / of the real line is said to be
square-integrable if [, f(x)?dx is bounded. In that case we say that f lies in the
function space L, on the interval /. We say that the Lo-norm of f is

112 = ([ rx2ax)

and we define the Lo-inner product of two square integrable functions f and g
by

(SIS

(F.9) = [ F(09(x)dx

The gradient V4V (q) of a scalar-valued differentiable function V(q) is defined
by

- V(q+eu)—V(q)
(VaV (@), = Jiy, 20—
where the equality is to hold for all vectors u of the same dimension as q. This
definition leads to the relation

VoV (q) = Va(a).

and, hence, the gradient V4V/(q) is a column vector.

The time derivative of a function g(t) will normally be denoted by dq/dt(t),
but whenever it is more convenient we may instead use the short-hand q(t). If
clear from the context, we will also frequently drop the argument in functions and
write, for example, g instead of g(t), or F instead of F(q). The same conventions
apply to higher-order derivatives.

If a variable u depends on several independent variables such as time t and
space x, then the partial derivatives are often denoted by u; and uy, respectively.

Given two maps ¥; : R” — R” and ¥, : R” — R” with compatible range and
domain, we define their composition ¥, o ¥; by

W2 0 W] (2) = Wa(¥1(2)),
for all z € R". The inverse of a one-to-one map ¥ is denoted by ¥ 1. Hence
vilow=id,

where id(z) = z the identity map.

Finally the Landau-order notation O(At) is used to denote a quantity that
goes to zero as rapidly as At goes to zero. More generally, we will write g(At) =
O(AtP) if g(At)/AtP is bounded as At — 0 but g(At)/At? is unbounded if

q>p.
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Introduction

This book is about numerical methods for use in simulating dynamical phenom-
ena governed by conservative processes. In this chapter, we review a few basic
principles regarding conservative models. In general, we are concerned here with
initial value problems for systems of ordinary differential equations (ODEs) of the
form
%z: f(z), z(ty) = 2°,

where z : R — R¥. The basic questions encountered early on in a first course
on ODEs concern existence and uniqueness of solutions, a topic addressed, for
example, by Picard’s theorem. Discussion then turns to various techniques for
analytically solving the differential equations when f has a prescribed form. In
particular, the scalar case k = 1 is an instance of a separable differential equa-
tion and such models are in principle solvable in quadratures (i.e. by evaluating
certain integrals and solving certain algebraic equations). Linear systems are ex-
actly solvable after determination of the eigenvalues and eigenvectors (or gen-
eralized eigenvectors, in the degenerate case). Beyond these and a few other
special cases, most models are not exactly integrable. In this book we are mostly
interested in complex models that do not admit exact solutions.

The emphasis of this book is on the particular models which are formulated
naturally as conservative systems of ODEs, most importantly Hamiltonian sys-
tems. As a general rule, mechanical systems resulting from physical principles are
Hamiltonian until (usually for prudent modeling purposes) subjected to simplifying
reductions or truncations. For example, in typical fluid dynamics applications, the
incorporation of diffusive effects due to friction with a boundary plays an essential
role in the modeling. However, in many situations, the conservative paradigm can
be retained and remains the most appropriate foundation for the construction of
models, since it is in no small measure due to properties such as conservation of
energy and angular momentum that matter behaves as it does.

The existence of Kepler's laws which approximately describe the motion of
the planets in the solar system are reflections of the conservative nature of



