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INTRODUCTION TO STATISTICAL FIELD THEORY

Knowledge of the renormalization group and field theory is a key part of physics,
and is essential in condensed matter and particle physics. Written for advanced
undergraduate and beginning graduate students, this textbook provides a concise
introduction to this subject.

The textbook deals directly with the loop expansion of the free energy, also
known as the background field method. This is a powerful method, especially when
dealing with symmetries and statistical mechanics. In focusing on free energy,
the author avoids long developments on field theory techniques. The necessity of
renormalization then follows.

EDOUARD BREZIN is Honorary Professor of Physics at the Ecole Polytechni-
que, and Emeritus Professor at the Ecole Normale Supérieure (Paris). A former
President of the French Academy of Sciences, he is also a Foreign Member of
the National Academy of Sciences (USA), the American Academy of Arts and
Sciences, the Royal Society, and Academia Europaea.



Preface

These lecture notes do not attempt to cover the subject in its full extent. There are
several excellent books that go much deeper into renormalization theory, or into
the physical applications to critical phenomena and related topics. In writing these
notes I did not mean either to cover the more recent and exciting aspects of the
subject, such as quantum criticality, two-dimensional conformal invariance, disor-
dered systems, condensed matter applications of the AdS/CFT duality borrowed
from string theory, and so on.

A knowledge of the renormalization group and of field theory remains a nec-
essary part of today’s physics education. These notes are simply an introduction
to the subject. They are based on actual lectures, which I gave at Sun Yat-sen
University in Guangzhou in the fall of 2008. In order not to scare the students,
I felt that a short text was a better introduction. There are even several parts that
can be dropped by a hasty reader, such as GKS inequalities or high-temperature
series. However, high-T series lead to an easy way of connecting geometrical crit-
icality, such as self-avoiding walks and polymers or percolation to physics. I have
chosen not to use Feynman diagrams; not that I think that they are unnecessary,
I have used them for ever. But since I did not want to require a prior exposition to
quantum field theory, I would have had to deal with a long detour, going through
connected diagrams, one-particle irreducibility, and so on. I have chosen instead to
base everything on the loop expansion of the free energy, not going here beyond one
loop. This method, known nowadays as the background field method, is powerful
(specially when dealing with symmetries) and natural from the viewpoint of statis-
tical mechanics. (However, the more technical Chapter 13, on the renormalization
of the non-linear sigma model, is aimed at readers who have some familiarity with
diagrams.)

In spite of the briefness of these notes I wanted to make it clear why, after
K. Wilson’s work, not only were critical phenomena understood but the under-
standing of the meaning of renormalizability in quantum field theory changed
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drastically. It became clear that a beautiful renormalizable theory, such as quan-
tum electrodynamics, was merely an effective theory, rather than a theory able
to describe electromagnetism from astronomical distances down to vanishingly
small length scales. This does not deprive QED from its exceptional beauty and
its astounding agreement with experiment. In the post-Wilson analysis its renor-
malizability results from the fact that, like critical phenomena, the present day
experiments, even at the highest presently available accelerator energies, deal with
very large length scales in comparison to those at which new physics must occur.
Why ‘must’? It is because, unlike QCD, QED lacks ‘asymptotic freedom’, with the
consequence that QED is ‘trivial’, meaning that it is only for a vanishingly small
charge of the electron that it could deal with the smallest length scales. So viewing
such theories, in the light of critical phenomena, told us that there has to be new
physics at short distance.

Many books overlap part or most of the material of these lectures; among a long
list, here is a short selection:

e John Cardy, Scaling and Renormalization in Statistical Physics (Cambridge: Cambridge
University Press, 1996).

Giorgio Parisi, Statistical Field Theory (New York: Addison-Wesley, 1988).

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd edn (Oxford: Oxford
University Press, 2002).

J. Zinn-Justin, Phase Transitions and the Renormalization Group (Oxford: Oxford
University Press, 2007).

e D.J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group and Critical
Phenomena (Singapore: World Scientific, 2005).

C. Itzykson and J. M. Drouffe, Statistical Field Theory, vols 1 and 2. (Cambridge:
Cambridge University Press, 1989).

Note also the historical article based on K. Wilson’s lectures in Princeton (1971-
72): K. G. Wilson and J. Kogut, The renormalization group, Phys. Rep., 12¢ (1974)
75. Several books in the long series devoted to Phase Transitions and Critical Phe-
nomena, edited by C. Domb and M. Green, and later by C. Domb and J. Lebowitz,
will provide additional light on some of the topics of these lectures; see, e.g., vol. 6
of the series.
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1

A few well-known basic results

This chapter is just a reminder of some basic results concerning equilibrium
statistical mechanics and of a few algebraic techniques used in this book.

1.1 The Boltzmann law

For a system at equilibrium in contact with a heat bath (or thermostat) at tempera-
ture 7', the configurations of the particles and the total energy are random variables.
The equilibrium probability distribution for N identical particles confined in a box
of volume V, whose dynamics are governed by a Hamiltonian H, is given by the
Boltzmann—Gibbs distribution

1
— —BH
= —e ; 1.1
p== (1.1)
in which B is related to the temperature by
|
= —. 1.2
B= T (1.2)

1.1.1 The classical canonical ensemble

For classical particles, in three dimensions, p is a probability measure in the 6N -
dimensional phase space (p,,q,), a = 1...3N and the expectation value of an
observable A(p, g) is given by

(A) = /drA(p, D0 ), (13)

in which dr is the measure dt = v N dp,dg,. The integrals over the

positions g, are such that every particle is confined in a box of volume V.
The factor 1/h3N, in which A has the dimension of an action (i.e., ML2T 1),
makes dr dimensionless. Any constant with that dimension would work but the
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classical limit of quantum statistical mechanics provides Planck’s constant,
h =2mh.

The factor 1/N'! is also of quantum origin: Pauli’s principle allows only for one-
dimensional representations of the permutation group of N particles, completely
symmetric (bosons) or completely antisymmetric (fermions). This selects only one
state out of the degenerate N! states obtained by permutations of one of them.

The normalization is fixed by (1) = 1, which gives the partition function Z:

Z(B,N,V) = /dref’”. (1.4)

1.1.2 The quantum canonical ensemble

The density matrix p, given by (1.1), is an operator in the Hilbert space of symmet-
ric states for integer spin particles, or antisymmetric states for half-integer spins, for
N particles confined in a box of volume V. The expectation value of an observable
A is given by

1 _pH
(Ay =Tr(pA) = ETrAe (L.5)
and thus the partition function is given by
Z(B,N,V)=Tre PH, (1.6)

If the eigenvalues of the N-body Hamiltonian are labelled as E;, then

Z s Ze—f’ﬂ‘. (1.7

If the energy E; has a degeneracy w; then

7 — X:e—l‘f(f‘:i—TSi)7 (1.8)

in which §; = k log w; and the last sum runs over distinct energies. This expression
shows that the dominant contributions are those that minimize the combination
E — TS, acompetition between energy and entropy to which we shall return in the
next section.

Exercise 1

Quantum effects arise when the typical de Broglie wavelength associated with a
particle becomes comparable to the interparticle distance. Estimate the tempera-
ture below which quantum effects should be taken into account for a gas of nitrogen
of atmospheric density.
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1.1.3 The grand canonical ensemble

If the system, in contact with a heat bath, can also exchange particles with a reser-
voir at temperature 7" and chemical potential u, the number of particles is also a
random variable. In the simple case in which the Hamiltonian Hy does not change
the number of particles, the probability distribution is given by a collection of py
given by
1
o = =N =P, (1.9)
Zg

with

pw=—, (1.10)

o
B
normalized by
Z, B, V) =) NTre P,
N

in which V is the volume of the box in which the particles are confined. (If the
Hamiltonian does not conserve the number of particles, it is necessary to use the
Fock space; this will not be needed within these lectures.)

1.2 Thermodynamics from statistical physics

The canonical free energy is given by
1
F(B, N, V):—BlogZ. (1.11)

Exercise 2

Show that the pressure, the entropy and the chemical potential of the system can all
be related to the partition function. Compute the partition function for a classical
gas of non-interacting particles.

1.2.1 The thermodynamic limit

The thermodynamic limit is the limit in which N and V go to infinity with a fixed

ratio v = N/V. In this limit one can show that, for particles with short-range
interactions, the canonical log Z, and thus F are extensive, namely
li 1 logZ (1.12)
im —lo g
N—o0,V—o00 N/V=v N .

exists and is a function of the two intensive variables v and B. Similarly, for the
grand canonical ensemble, limy_, o, 1/V log Z; exists and is a function of the
intensive variables, temperature and chemical potential.
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Exercise 3
Verify this extensivity for N free classical particles in a box. Reminder: Stirling’s

formula N' = V27N (¥)" (14 0 (4))-

For charged particles, such as electrons with Coulomb interactions, the ther-
modynamic limit exists, provided that (a) the system is neutral, i.e., the charge
of the ions compensates the charge of the electrons, (b) the system is quantum
mechanical, (c) Pauli’s principle is taken into account.'

Exercise 4
Assume that the potential energy of N interacting classical particles is a homoge-
neous function

V(rq---Ag3n) = A"V (g1 -~ q3n).
Show that the pressure p(v, T), where v = N/ V, satisfies the relation
p(v’ T) — T1~3/X(p(vT3/S)'

Assume that at low temperature Ty the isotherm in the (p, V) plane presents a
phase transition between two phases of different densities. Can there be a critical
point for this phase transition, i.e., a temperature at which the transition between
the two phases disappears?

1.3 Gaussian integrals and Wick’s theorem

" grete = [2F (1.13)
das? = =, .
—0Q

Gy ey Dgn, _ @O
s JdetA
A = A’ is here a real symmetric matrix with positive eigenvalues. It can thus be diag-
onalized by an orthogonal transformation w, i.e., A = ' Dw, in which D is the diagonal
matrix of the eigenvalues (ay, ..., a,) of A. The change of variables wx = y whose
Jacobian (| det w| ') is equal to one, leads to the solution.
3. nvariables in a source

|
LS v Axs bix;
fRn dX] "'dxne gz‘l 11"1+Z - —elizbiAfjlbf
1 CAixs - .
-[R” dxl - dxne'Z ZX!AIJ-‘]

1. One variable

2. nvariables

(1.14)

(1.15)
Translatex =y + A~ 'b .

! J. Lebowitz and E. Lieb, Phys. Rev. Lett., 22 (1969) 631.
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4. Wick’s theorem
a

Apply to (1.15) the operation % -+ zp— and then set all the b; = 0. The Lh.s. gives
B 2n

| Ay
fR" dX] EPe dxne_j Z/\tA:/ijil .. 'xizn
<xi1 "'xi2n> = l d (1.16)
fRn dxl e dxneﬁj ZXiAijxj

Applying this to the rh.s. of (1.15) we can limit ourselves to the term X

1
"
n
b; A7 b ; indeed terms of lower degree in the expansion of the exponential will
i P P

give zero by differentiation; terms of higher degree will give zero because they are left
with b and vanish at b = 0. Therefore,

d o1 RN
(o~} = g g (D biag's;) (1.17)

Define a complete pairing of the % such that each % has a partner. For this particular
pairing, the two paired differentiations go to the same Y, but there are n! ways of
associating the sums and the chosen pairing. Once this association is made, one has
simply to note that
J 9 -1 -1
%a—b[ ZblAlj bj == 2Ak[ .

Therefore the n!2" cancels and we are left with the result, known as Wick’s theorem,

for Gaussian integrals.
(i - - xiy,) = Z HAl._ailb_ (1.18)

pairings each
pair

Exercise
Compute the integral

2 s 1932
fR2 dxdy x4y26—(x +xy+2y°)

I = fR2 dxdye—(x2+xy+2_vz)
Answer
B 144
343’
since
I =3((xx)*(yy) + 12(xx)({xy))?,
in which
(xx) = Ay (xy) = AL (yy) = A3,
with
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1.4 Functional derivatives

A functional F{f} is an application from a space of functions f to a complex or
real number F. For instance the action integral for the motion of a particle, located
at the position ¢(¢) at time ¢, with potential energy V (g) is the functional of the
trajectory given by

Siq) =/'dr [5d2-v@)]. (1.19)

n
Let us work with functions f of a single real variable x (the generalization to
functions of more variables is immediate). The derivative of the functional with
respect to f(x) at x = xp is defined as follows. Let us consider an increment
€d,(x — xo); the function §,(x) is centred at the origin, and it has a width »; it is
normalized to one, i.e., [ 8,(x)dx = 1. When 5 goes to this zero, this increment

approaches the Dirac distribution §(x). (For instance 6, (x) = %e""z/ 2'72.) One

V21
computes next the increment of the functional '
AF = F{f 4+€b,(x —xp)} — F{f}. (1.20)
The functional derivative of F at x is defined as
SF lim [i AF (1.21)
— | = Ilim lim —. 2
5f X0 n—0e—=0 €

The limits have to be taken in the order indicated: if we let € go to zero first, we
avoid non-linearities in §,. In the opposite order we would encounter powers of §,,,
which do not have a limit when 1 goes to zero.

Let us apply this to the above action functional:

|
lim ;[S{q(t) + €8,(r — 10)} — S{g}I

— f - df[m(} 81)(1 - f()) - V/(C])&,(f - t())]- (]22)
n
After an integration by parts of the first term one ends up with
5S .. ,
a(f()) = —mq(to) — V'(q(t0)) (1.23)

and Newton’s law is just given by the vanishing of this functional derivative for
any #o: the action is stationary (in fact a minimum) for the classical trajectory.

1.5 d-dimensional integrals

The rules are simple but they may surprise the reader who sees them for the first
time. Whenever the dimension d is an integer, the d-dimensional integral is the
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ordinary integral over the whole space R“. But, for arbitrary d, one applies the
following rules:

@) [diqf(q+p) = [dqf(q),
(b) [dlqf(hg) = A7¢ [diqf(q).

If g, is a d,-dimensional vector and ¢, is a d>-dimensional vector and
f(g)=2g1(q1)g2(q2) withd = d| 4+ d>, then

(©) [diqf(q) = [dqig1(q1) [ d7q282(q2).
Consequences:

e From (b) the only finite solution to an integral, such as f d‘[q(qz)"' is

/ d/q(q** =0
for any positive or negative real number &, including & = 0. Note that this integral never
exists as an ordinary integral for integer dimensions. The consistency of this rule will be

checked below.
e The same would apply to any scale-invariant integral, such as

, !
/ddqlddqz(qlz)A [(611 +flz)2] =0.

R +00 , d
/d‘lq g1 = [/ d,xe_“":l o
—00

Let us use these rules to calculate simple integrals:

p) 3 1 S i
d(lq(({' + 1) = — / ddq/ e~ M@ D k=145
/ (k) 0

a2 o A2k —
_T /”Qdk)\k—d/Z—le—}\ _= PT(k—d/2) .

e From (¢)

') Jo I'(k)
One can also compute this integral in ‘spherical’ coordinates:
Ipdiz oo 1
d(/ ( 2+ ])—k — dx xl/—l
/ " L@/ Jo (2 F 1

274/% | /'

_ ~ | dy yarm1(q = yydre
rama)y © '

T2k —d/2)
(k)
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(change 1/(1 +x?) = y). Itis easy to verify on examples, such as d =3 and k =2,
that whenever the integral exists in the ordinary sense it is indeed given by this
result.

To check the consistency of rule (b) let us compute

1
J= | dg———
f q’(q + 1)

If we use spherical coordinates,

7= /2 ocdxxd_3 1 _ 242 l/ldy yl_d/z(l _y)d/z—z
I'd/2) Jo x2+1 T@d/2)2 Jo
wél?
= rQ-d4d/2)rd/2 -1),.
Fd/2) ( /2)T(d/ )

It is easy to verify that, for d = 3, J exists as an ordinary integral and is indeed
given by this result. Alternatively, using the identity @D ) 250 ql pe: H , we find,
from rule (b) and the above k = 1 result,

J=0—mT(1—-d/2),

and it is easy to check that this coincides with the above result for J.

Additional references

Shang-Keng Ma, Statistical Mechanics, (Singapore: World Scientific, 1998).
L. P. Kadanoff, Statistical Physics, Statics, Dynamics and Renormalization, (Singapore:
World Scientific, 2000).

On the existence of the thermodynamic limit:

David Ruelle, Statistical Mechanics: Rigorous results, (New York: Benjamin, 1969).
Kerson Huang, Statistical Mechanics, (New York: Wiley, 1963), Appendix C.



