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Preface

The twenty-first century is said to be the century of nanotechnologies. In a way, it is. The develop-
ment of science and technology has come to a stage where “microscopic” is no longer enough to
properly describe or depict a scientific phenomenon or a technological process. With the advance of
nanoscience and nanotechnology, the world technological landscape changes not only affect the way
scientists do research, technologists carry out development, and engineers manufacture products,
but also the way ordinary people go about their daily life, through, for instance, nanomedicine, cell
phones, controlled drug delivery, no-pain operations, solar cell-powered gadgets, etc. Thin films
and coatings play a very important and indispensable role in all of these. This three-volume book set
aims to capture the development in the films and coatings area in relation to nanoscience and nano-
technology so as to provide a timely handbook series for researchers to refer to and for newcomers
to learn from, and thus contribute to the advancement of the technology.

The three-volume book set, Handbook of Nanostructured Thin Films and Coatings, has 25 chap-
ters where 11 chapters in volume 1 concentrate on the mechanical properties (hardness, toughness,
adhesion, etc.) of thin films and coatings, including processing, properties, and performance, as well
as a detailed analysis of theories and size effect, etc., as listed here: Chapter 1, The Fundamentals of
Hard and Superhard Nanocomposites and Heterostructures; Chapter 2, Determination of Hardness
and Modulus of Thin Films; Chapter 3, Fracture Toughness and Interfacial Adhesion Strength
of Thin Films: Indentation and Scratch Experiments and Analysis; Chapter 4, Toughness and
Toughening of Hard Nanocomposite Coatings; Chapter 5, Processing and Mechanical Properties of
Hybrid Sol-Gel- Derived Nanocomposite Coatings; Chapter 6, Using Nanomechanics to Optimize
Coatings for Cutting Tools; Chapter 7, Electrolytic Deposition of Nanocomposite Coatings:
Processing, Properties, and Applications; Chapter 8, Diamond Coatings: The Industrial Perspective;
Chapter 9, Amorphous Carbon Coatings; Chapter 10, Transition Metal Nitride—Based Nanolayered
Multilayer Coatings and Nanocomposite Coatings as Novel Superhard Materials; and Chapter 11,
Plasma Polymer Films: From Nanoscale Synthesis to Macroscale Functionality.

Volume 2 contains eight chapters focusing on functional properties, i.e., optical, electronic, and
electrical properties, and the related devices and applications: Chapter 1, Large-Scale Fabrication
of Functional Thin Films with Nanoarchitecture via Chemical Routes; Chapter 2, Fabrication
and Characterization of SiC Nanostructured/Nanocomposite Films; Chapter 3, Low-Dimensional
Nanocomposite Fabrication and its Applications; Chapter 4, Optical and Optoelectronic Properties
of Silicon Nanocrystals Embedded in SiO, Matrix; Chapter 5, Electrical Properties of Silicon
Nanocrystals Embedded in Amorphous SiO, Films; Chapter 6, Properties and Applications of
Sol-Gel-Derived Nanostructured Thin Films: Optical Aspects; Chapter 7, Controllably Micro/
Nanostructured Films and Devices; and Chapter 8, Thin Film Shape Memory Alloy for Microsystem
Applications.

Volume 3 focuses on organic nanostructured thin-film devices and coatings for clean energy with
six chapters discussing the processing and properties of organic thin films, devices, and coatings
for clean energy applications: Chapter 1, Thin Film Solar Cells Based on the Use of Polycrystalline
Thin Film Materials; Chapter 2, Anodized Titania Nanotube Array and its Application in Dye-
Sensitized Solar Cells; Chapter 3, Progress and Challenges of Photovoltaic Applications of
Silicon Nanocrystalline Materials; Chapter 4, Semiconductive Nanocomposite Films for Clean
Environment; Chapter 5, Thin Coating Technologies and Applications in High-Temperature Solid
Oxide Fuel Cells; and Chapter 6, Nanoscale Organic Molecular Thin Films for Information Memory
Applications.

vii



viii Preface

A striking feature of these books is that both novice and experts have been considered while
they were written: the chapters are written in such a way that for newcomers in the relevant field,
the handbooks would serve as an introduction and a stepping stone to enter the field with least
confusion, while for the experts, the handbooks would provide up-to-date information through the
figures, tables, and images that could assist their research. I sincerely hope this aim is achieved.

The chapter authors come from all over the globe: Belgium, China, the Czech Republic, Egypt,
Germany, India, Korea, Singapore, Taiwan, the Netherlands, the United Kingdom, and the United
States. Being top researchers at the forefront of their relevant research fields, naturally, all the con-
tributors are very busy. As editor, I am very grateful that they all made special efforts to ensure
timely response and progress of their respective chapters. I am extremely indebted to many people
who accepted my request and acted as reviewers for all the chapters—as the nature of the writing is
to cater to both novice and experts, the chapters are inevitably lengthy. To ensure the highest qual-
ity of the chapters, more than 50 reviewers (at least two per chapter) painstakingly went through all
the chapters and came out with sincere and frank criticism and suggestions that helped make the
chapters complete. Though I am not able to list all the names, I would like to take this opportunity
to say a big thank you to all of them. Last but not least, I would like to convey my gratitude to many
CRC Press staff, especially Allison Shatkin and Jennifer Ahringer at Taylor & Francis Group, for
their invaluable assistance rendered to me throughout the entire endeavor that made the smooth
publication of the handbook set a reality.

Sam Zhang
Singapore
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1.1 INTRODUCTION

As shown in Figure 1.1, most solar cells produced and sold at the present time are based on the use
of crystalline or multi-crystalline silicon [1]. Despite the excellent progress in developing these
technologies, it has been realized for some time that there is a need to reduce production costs
significantly to compete directly with other forms of power generation. This need for solar cells
and modules to be produced with much lower manufacturing costs has been the major impetus for
developing thin film solar cells [2—6].

Crystalline and multi-crystalline silicon have indirect energy bandgaps, with correspondingly
low optical absorption coefficients, such that several hundred microns of silicon are needed to
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FIGURE 1.1 The market share of PV cell types sold during 2008.

absorb most of the incident light. Carriers generated by the incident light must also diffuse to the
junction region to be acted upon by the electric field at the junction to contribute to the power gen-
erated. For the “minority carrier diffusion length” to be comparable or greater than the “optical
absorption depth,” recombination centers in the silicon must be minimized by

1. Purifying the silicon to a high level
2. Producing the silicon with as few crystal defects as possible

Silicon solar cells are costly because of

1. High material usage

2. High processing costs (to purify the material and minimize crystal defects)

3. High “handling costs” in the manufacturing process, as often the processing is not fully
automated

Thin film solar cells based on the use of direct-energy-bandgap semiconductors, e.g., hydroge-
nated amorphous silicon (aSi:H), cadmium telluride (CdTe), and copper indium gallium diselenide
(CIGS), minimize these costs because their correspondingly high optical absorption coefficients
(a>10* cm™') mean that only a few microns of material are needed to absorb the incident sunlight.
This means that a long minority carrier diffusion length is not required, because most of the photo-
carriers are generated within the depletion region or very near to the edge of the depletion (usually,
<l um). This means that relatively low-cost methods can be used to make devices. Furthermore,
depositing thin films of materials lends itself naturally to continuous production processes that are
capable of depositing large areas of material.

The most successful materials used for making photovoltaic (PV) solar cells in the thin film form
are aSi:H, CdTe, CIGS, and CulnS, (copper indium disulfide). Despite the continuing success of
deploying aSi:H devices over the past decade, it should be noted that the efficiencies of commer-
cially produced single-junction oeSi:H modules are low (<4%) due to the light-induced degradation
of efficiency, due to the Stabler-Wronski effect [7]. More complex structures, such as double junc-
tion, triple junction, and micromorph tandem devices, have been developed to improve efficiency
and stability [7]. However, the very best devices produced only have efficiencies of around 10% and
the complexity of manufacturing increases device fabrication costs.

This chapter will concentrate on the much more efficient, stable solar cells made using CdTe,
CIGS, and CulnS,. Some novel inorganic absorber-layer materials that are currently of interest are
also discussed. These include CulnAlSe,, Cu,ZnSn(Se,S),, and SnS (tin monosulfide).
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Currently, the largest manufacturer of CdTe-based solar cells is the U.S. company, First Solar.
First Solar manufactures modules with efficiencies approaching 10% with a cost of 0.74 €/W. The
CdTe modules are approximately 15% cheaper for each kW installed than their nearest rivals. Despite
needing a larger area to generate the same amount of power, the cost advantage has persuaded
many to buy CdTe-based modules [8]. Recent projects include the integration of CdTe modules
onto a Logistics Building of a U.S. Army base in Ramstein, Germany (so far the biggest example
of building-integrated photovoltaics [BIPV] using a thin film technology), and the fabrication of a
large solar power station in Muldentalkreis, Saxony, and Germany. First Solar is currently building
four further production facilities in Malaysia (joint capacity of 480 MW) and one further production
facility in Frankfurt (Oder), Germany (120 MW facility) [8].

Other companies that have been involved in developing pilot production lines for the manufac-
ture of CdTe-based modules include Matsushita (screen printing), BP Solar (electrodeposition),
and Antec GmbH (close-spaced sublimation [CSS]). Although these companies had good success
in producing small-area cells with good efficiencies, all these companies have now ceased pro-
duction. This has partly been because of concerns with the lack of public acceptability of using a
toxic metal such as cadmium in a “green product.” This is despite detailed studies having shown
that the environmental costs are no worse than those with other methods of energy production [4].
It can in fact be argued that combining cadmium (a highly toxic by-product of the extraction of
zinc and copper) with tellurium to form CdTe, a nontoxic compound, that can be used to produce
“green electricity,” is environmentally beneficial. The impressive success of First Solar in selling
its products into Germany, one of the most environmentally sensitive countries in the world, sug-
gests that CdTe technology is becoming increasingly acceptable to the general public. Table 1.1
gives the capacity and output of First Solar and a new German company, Calyxo, during the period
2007-2008.

Table 1.2 lists the main producers of chalcopyrite-based (CIGS and CulnS,) solar modules dur-
ing 2007-2008. It is clearly evident that there are many more manufacturers than for CdTe-based
cells and modules. This is because the chalcopyrite solar cells and modules can be made totally Cd
free, minimizing environmental concerns. Most of these manufacturers use CIGS as the absorber-
layer material. The exceptions are Sulphurcell and Odersun, who use copper indium disulfide. In
the laboratory, CIGS-based cells have been produced with efficiencies up to 19.9% using the co-
evaporation method [9], just lower in efficiency than the best cells made using multi-crystalline
silicon. However, transferring the excellent results obtained in the laboratory into low-cost modules
with acceptable efficiencies and yields has proved challenging. The best manufacturing costs are
about 2.5 €/Wp, i.e., at present comparable to multi-crystalline silicon [8]. However, it is expected
that with economies of scale, the situation will reverse over the next decade. There are currently
concerns with respect to the lack of abundance of indium and gallium. This is pushing up the price
of the raw materials to very high levels and may limit the large-scale deployment of CIGS-based
modules in the longer term. It is however expected that these elements could be replaced by other
elements that are more available and cheaper, e.g., Sn and Zn or Al. Work is already ongoing into
trying to develop such materials. Figure 1.2 shows an example of BIPV, the 85kWp Technium

TABLE 1.1
Companies Manufacturing CdTe Modules during 2007-2008

2007 Capacity 2007 Production 2008 Capacity 2008 Production

Company Country (MW) Mw) (MW) Mw)
Calyxo Germany 8 1 25 5
First Solar ~ United States 210 100 210 200

Source: Rentzing, S., New Energy, 3, 58, 2008.
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TABLE 1.2

Companies Manufacturing Chalcopyrite Modules during 2007-2008

Company
Avancis
Day Star
Technologies
Global Solar
Honda Soltec
Johanna Solar
Odersun
Nano Solar
Scheuten
Showa Shell
Sekiyo
Solibro
Sulphurcell
Wiirth Solar
VHF Technologies

Country

Germany
United States

United States
Japan

Germany
Germany
United States
The Netherlands
Japan

Germany
Germany
Germany
Switzerland

2007 Capacity
(MW)

27.5

4.5
430
10
20

Source: Rentzing, S., New Energy, 3, 58, 2008.

2007 Production
MW)

15
0.1

2008 Capacity
(MW)

20
25

75
27.5
30
30
430
40
20

25

5
30
25

2008 Production
MwW)

75

FIGURE 1.2 The 85kWp Technium OpTIC building in St Asaph, Wales, which is covered with the of CIGS

modules manufactured by Shell Solar.

OpTIC (Opto-electronics Technology and Incubation Centre) in St Asaph, Wales, United Kingdom,

which is covered with the CIGS modules manufactured by Shell Solar.

The thin film solar cells and modules made using CdTe are usually formed by sequentially depos-
iting layers onto glass substrates in the following sequence: transparent conductive oxide (TCO),
buffer layer, absorber layer, and finally the back-contact layer. This structure, in which the TCO
layer is deposited first and the back-contact layer last, is known as the “superstrate configuration.”
The thin film solar cells and modules made using the chalcopyrite compounds are usually formed
by sequentially depositing layers onto glass substrates in the following sequence: back contact,
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absorber layer, buffer layer, TCO, and finally the top grid contact, and are referred to as being in the
“substrate configuration.”

The following sections will deal with (1) the methods used to produce the CdTe absorber layers,
(2) the methods used to produce the chalcopyrite compound absorber layers, (3) novel materials that
have the potential to replace the more established materials, (4) the buffer layers, and (5) the TCO
layers most commonly used and under development.

1.2 THIN FILM SOLAR CELLS BASED ON THE USE OF CdTe

1.2.1 HistoricaL DeveLopment oF CdTe SoLAr CELLs

The potential of using CdTe as an absorber-layer material in a solar cell has long been recognized.
With a near-optimum, direct energy bandgap of 1.45eV, CdTe-based solar cells can, in theory, be
used to produce PV solar cell devices with efficiencies up to 27% [10]. Historically, CdTe homo-
junction cells were the first to be investigated. However, the efficiencies were limited to <6% due to
surface recombination. This arose because the high optical absorption coefficient of the CdTe meant
that the collecting junction had to be located near the surface of the CdTe [11]. The first efficient
polycrystalline thin film CdTe-based solar cell was the p-Cu,Te/n-CdTe heterojunction solar cell.
Such devices were also produced with conversion efficiencies up to 6% [12]. However, these solar
cells were found to be unstable with the instability found to be associated with the use of the Cu,Te
layer.

In 1969, a p-CdTe/n-CdS heterojunction solar cell was fabricated with an efficiency of 1% [13].
This thin film solar cell device was made by evaporating CdS onto a TCO-coated glass substrate.
CdTe was then deposited onto the CdS and then a metallic back contact onto the CdTe. Such a
“superstrate configuration device” is shown in Figure 1.3. In 1972, an all thin film CdTe/CdS solar
cell was produced by Bonnet and Rabenhorst with an efficiency >5% [14]. The promising efficiency
and good stability of these devices stimulated worldwide interest in the development of CdS/CdTe
thin film solar cells.

1.2.2 MATERIAL PROPERTIES

CdTe is part of the ITB-VIA compounds family. With a direct energy bandgap of 1.45¢V and a large
optical absorption coefficient (>105 cm™) for the visible spectrum, only a few microns of CdTe are
needed to absorb >95% of photons with energies >1.45eV. CdTe is also amphoteric, i.e., it is possible
to produce homojunctions with appropriate doping.

The temperature—composition phase diagram of CdTe has been described in detail by Zanio [11].
The melting point of CdTe is 1092°C which is significantly greater than Cd (324°C) and Te (450°C).
This results in a large range of deposition temperatures available for the production of CdTe thin
films. A detailed examination of the stoichiometric region reveals the presence of a symmetrical
region which allows nonstoichiometric doping of the CdTe compound to be easily achieved. This
makes the conductivity type of CdTe easily controllable. The crystal structure of CdTe is zinc

Back contact

CdTe absorber layer
CdS buffer layer

Transparent conductive oxide

Front contact

Glass substrate

FIGURE 1.3 CdTe/CdS solar cell in superstrate configuration.
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blende (Figure 1.4) with a unit cell length of 6.481 A [15] and a CdTe
bond length of 2.806 A [16).

The most common defect levels in CdTe and their position rela-
tive to the conduction or valence band are shown in Table 1.3.
Nonstoichiometric doping is achieved by controlling the concen-
tration of native defects in the undoped material. Cadmium-rich
growth enhances the formation of tellurium vacancies (V,), which
can become positively charged. These defects act as donors, and the
CdTe material grown is therefore n-type. The tellurium-rich film
will be p-type, due to the presence of cadmium vacancies (Vg 0r
V&), which tend to act as acceptor impurities. The CdTe and CdS
layers can also be extrinsically doped in order to increase carrier
concentration in each layer by adding appropriate donor or acceptor
impurities. However, doping is usually achieved during a post-deposition heat treatment of the
CdTe in air, following a dip in a solution of CdCl, in methanol or by the direct incorporation of
CdCl, into the growing CdTe, followed by an anneal in air [11] (see Section 1.2.4.5 for further
details).

FIGURE 1.4 Unit cell of
the CdTe zinc blende crystal
structure.

1.2.3 DrposiTioN TECHNIQUES FOR CdTe

1.2.3.1 Thermal Evaporation

CdTe powder, or Cd or Te in the elemental form, can be heated to sublime onto an appropriate substrate,
e.g., a glass slide. A schematic diagram of thermal evaporation is shown in Figure 1.5. Deposition
is usually carried out in high vacuum, using a source temperature in the range 600°C-800°C and
a substrate temperature in the range 100°C—400°C. A deposition rate of 1 um/min can be obtained
using a source temperature of 800°C and a substrate temperature of 100°C. Higher substrate tem-
peratures result in a lower deposition rate. The as-deposited films often exhibit a [111] preferred
orientation [24] and also a columnar grain structure [25]. The grain size strongly depends on film
thickness and substrate temperature. Typically, for a 2 um thick film, grain sizes range from 100nm
for a substrate temperature of 100°C to 1 um when the substrate temperature is 350°C.

1.2.3.2 Sputtering

CdTe films can be successfully deposited by radio-frequency (RF) magnetron sputtering from com-
pound targets. In the case of CdTe, the mass transfer of Cd and Te occurs via the bombardment
of the CdTe target by Ar* ions, followed by diffusion to the heated substrate (200°C-300°C) and

TABLE 1.3

lonization Energy (eV) of Common Defects and Impurities in CdTe

Type Acceptors Donors

Name Ast, VeCle  Vé Ve Vé VeaTecq Cls, Vi Ch. Vg Cd¥
Tonization 0.10 0.12 014 045 060074 074 0014 004 007 040 0.64

energy (eV)

Sources: Hoschl, P. et al., Mater. Sci. Eng. B, 16, 215, 1993; Abulfotuh, F.A. et al., Study of the defects levels, electrooptics
and interface properties of polycrystalline CdTe and CdS thin films and their junction, in Proceedings of the 26th
IEEE Photovoltaic Specialists Conference, Anaheim, CA, 1997, p. 451; Emanuelsson, P. et al., Phys. Rev. B, 47,
15578, 1993: Wienecke, M. et al., Semicond. Sci. Technol., 8, 299, 1993; Krsmanovic, N. et al., Phys. Rev. B, 62,
16279, 2000; Berding, M.A.. Phys. Rev. B, 60, 8943, 1999; Capper, P. (ed.), Properties of Narrow Gap Cadmium-
Based Compounds, INSPEC, London, U.K., 1994.
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FIGURE 1.5 Schematic diagrams of thermal evaporation (a) and sputtering (b) deposition techniques.

condensation. A schematic of a simple sputtering system is shown in Figure 1.5. The typical deposi-
tion rate is 100nm/min. As-deposited films (2 wm thick) have a grain size of ~300nm with nearly
random grain orientation [26].

1.2.3.3 Close-Spaced Sublimation

Close-spaced sublimation (CSS) is a widely used technique for depositing CdTe and is in fact a
modified version of the thermal evaporation method. To date, the most efficient cells use CSS-
deposited CdTe [27-30]. This technique is based on reversible dissociation of CdTe at high tempera-
ture. The source material is maintained at a higher temperature (e.g., 650°C) than the substrate (e.g.,
550°C), a few mm away from it (Figure 1.6). The source dissociates into its elements that recombine
on the substrate surface. The deposition occurs through a flowing gas that can be N,, Ar, He, or O,.
This deposition technique is characterized by a high deposition rate (>1 pum/min), a nearly random
orientation of the as-deposited film [24], and a large grain size (several um) [31].

1.2.3.4 Vapor Transport Deposition

Vapor transport deposition (VTD) is a high-rate deposition technique, also sometimes referred
to as modified CSS. This technique was developed by Solar Cells, Inc. [32,33], and deposition
occurs by the transfer of Cd and Te vapors from heated CdTe onto a moving and heated substrate

Carrier noe

gas

o || /)

|""I650°C
|""|600°C

10 Torr 10-100 Torr

| Close-spaced sublimation I | Vapor transport deposition |

(@ (b)

FIGURE 1.6 Schematic diagrams of CSS (a) and VTD (b) deposition techniques.



